|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Object
|
+--edu.stanford.nlp.cluster.AbstractClusteringMethod
|
+--edu.stanford.nlp.cluster.HACM
Hierarchical Agglomerative Clustering Method
| Field Summary |
| Fields inherited from class edu.stanford.nlp.cluster.AbstractClusteringMethod |
clusters, db, method, nc, nd, nt |
| Constructor Summary | |
HACM(Double4Function type)
Sets values for db, nt, nd, csf. |
|
HACM(cern.colt.function.DoubleDoubleFunction type)
Sets values for db, nt, nd, csf. |
|
| Method Summary | |
Entry |
closest(Matrix m)
Iterates through the similarity matrix to find the clusters with highest similarity. |
SimpleClusters |
cluster(DataCollection data,
int num_clusters)
Clusters documents into the desired number of clusters by Hierarchical Agglomerative Clustering |
Clusters |
cluster(int num_clusters,
Double4Function complicatedcsf)
Clusters using complicated cluster similarity function, such as group-average |
Clusters |
cluster(int num_clusters,
cern.colt.function.DoubleDoubleFunction simplecsf)
Clusters using a simple cluster similarity function, such as single-link or complete link |
void |
finish()
Finalizes clusters by setting P(w|z) to be the weighted mean of the data vectors in the cluster |
| Methods inherited from class edu.stanford.nlp.cluster.AbstractClusteringMethod |
cluster, evaluate, evaluate, initialize, toString, toXMLString |
| Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
public HACM(cern.colt.function.DoubleDoubleFunction type)
type - Cluster Similarity Function (i.e. single-link, complete-link,
group averagepublic HACM(Double4Function type)
type - Cluster Similarity Function (i.e. single-link, complete-link,
group average| Method Detail |
public Entry closest(Matrix m)
i,j are the two closest clusters, and value is the value assigned by the similarity metric.
public SimpleClusters cluster(DataCollection data,
int num_clusters)
num_clusters - number of final desired clusters
public Clusters cluster(int num_clusters,
cern.colt.function.DoubleDoubleFunction simplecsf)
public Clusters cluster(int num_clusters,
Double4Function complicatedcsf)
public void finish()
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||