
Operator Placement for In-Network Stream Query Processing

Utkarsh Srivastava Kamesh Munagala Jennifer Widom
Stanford University Duke University Stanford University

usriv@cs.stanford.edu kamesh@cs.duke.edu widom@cs.stanford.edu

Abstract

In sensor networks, data acquisition frequently takes
place at low-capability devices. The acquired data is
then transmitted through a hierarchy of nodes hav-
ing progressively increasing network bandwidth and
computational power. We consider the problem of
executing queries over these data streams, posed at
the root of the hierarchy. To minimize data transmis-
sion, it is desirable to perform “in-network” query
processing: do some part of the work at intermedi-
ate nodes as the data travels to the root. Most pre-
vious work on in-network query processing has fo-
cused on aggregation and inexpensive filters. In this
paper, we address in-network processing for queries
involving possibly expensive conjunctive filters, and
joins. We consider the problem of placing operators
along the nodes of the hierarchy so that the overall
cost of computation and data transmission is mini-
mized. We show that the problem is tractable, give
an optimal algorithm, and demonstrate that a simpler
greedy operator placement algorithm can fail to find
the optimal solution. Finally we define a number of
interesting variations of the basic operator placement
problem and demonstrate their hardness.

1 Introduction

We consider query processing in environments
where data is collected at “edge devices” with lim-
ited capabilities, such as sensors. Collected data is
transmitted through a hierarchy of network nodes
and links with progressively increasing computa-
tional power and network bandwidth, as shown in
Figure 1. The “high fan-in” environment addressed
by the BerkeleyHiFi project [10] is one example,
but other scenarios that involve data acquisition and
subsequent processing, e.g., network monitoring [6],

ResultsQuery

Data acquisition

increasing

increasing

computational

bandwidth

power ,

Figure 1: Sensor Data Processing

may exhibit similar general characteristics.
Typically, queries are posed and results collected

at the root of the hierarchy. One simple approach is
to transmit all data acquired at the sensors through
the hierarchy to the root, then perform all query pro-
cessing at the root. However, if queries produce sig-
nificantly less data than they consume—because of
filtering, aggregation, or low-selectivity joins—then
this approach may pose considerable unnecessary
burden on network bandwidth.In-network query
processingpushes some or all of the query execu-
tion task to nodes lower in the hierarchy, in order to
reduce overall network costs [15]. In general, find-
ing the best point in the hierarchy at which to per-
form specific processing is a difficult problem: Plac-
ing work lower in the hierarchy reduces transmission
costs but imposes more burden on lower-capability
devices. The goal is to properly balance these op-
posing effects to minimize overall cost.

Previous work on in-network query processing has
focused on queries in which data reduction occurs
because of aggregation operators [15], or through in-
expensive filtering that is not a burden on edge de-
vices (so all filters are pushed to the leaves). We con-
sider queries that may involve expensive predicates,
such as text, image, or video filtering, or lookups to
remote sources. For these operators it may not be
best (or even possible) to filter at low-capability sen-

1

ResultsAquisition
Data

(Stream) transmission
lcost

transmission
lcost

transmission
lcost 1 2 m−1

N1 N N2 m

computational

1γ

increasing computation power and bandwidth

cost scale−down cost scale−down
computational

2γ
cost scale−down
computational

γm−1

Figure 2: Basic Scenario and Cost Model

sors. Our objective is to place each filter operator at
the “best” node in the hierarchy for that filter, based
on its selectivity and cost, and considering the com-
putational capabilities of the nodes up the hierarchy
against the burden of bringing the data to each node.

Suppose we have anm-level hierarchy andn fil-
ters in our query. For one sensor’s input stream
there aremn possible filter placements for process-
ing the data as it travels to the root. We show that
nevertheless the operator placement problem has a
polynomial-time optimal solution. We provide an
optimal algorithm, and show that a simpler greedy
algorithm can fail to find the optimal solution.

A key idea in our work is to model network links
as filters. Then we can address our overall problem
as one of filter ordering on a single node, but with
precedence constraints for those filters that are mod-
eling links. We start by consideringuncorrelatedfil-
ters, i.e., filters whose selectivity is independent of
the other filters, and then extend our algorithm to cor-
related filters. In both cases, we show how the prece-
dence constraints can be dealt with so that known re-
sults on filter ordering [13, 17] can be reused. After
addressing queries with filters alone, we extend our
algorithm to include multiway joins, showing how to
decide where a join operator should be placed opti-
mally with respect to the query’s filter operators.

The overall contributions of this paper are:

• We define the problem of operator placement
for in-network processing of queries with ex-
pensive filters (Section 2).

• We describe a greedy algorithm that can fail
to find the globally optimal solution to the
operator placement problem, then present a
polynomial-time optimal algorithm for uncorre-
lated filters. We extend our algorithm to provide
the best possible approximation for correlated
filters (Section 3).

• We extend our algorithm to include operator
placement for a multiway stream join together
with filters (Section 4).

• We identify several variations on the problem
and in some cases show their hardness (Sec-
tion 5). We consider nodes with resource con-
straints, load balancing across nodes, and a
more complex cost model for how filter costs
may vary across different nodes.

Related work and conclusions are presented in Sec-
tions 6 and 7.

2 Preliminaries

We begin by considering data acquired by only one
of the leaf nodes of Figure 1 and focus on in-network
query processing over this data. As this data is trans-
mitted up the hierarchy, the basic network topology
we need to consider (shown in Figure 2) consists of
a linear chain of nodesN1, N2, . . . , Nm, wherem
is the number of levels in the hierarchy. In relation
to Figure 1, the leftmost nodeN1 corresponds to the
point of acquisition, while the rightmost nodeNm

corresponds to the root of the hierarchy. Each node
Nj transmits only to nodeNj+1. We consider the
linear hierarchy merely for ease of presentation; in
Section 3.4 we show how our algorithms extend in a
straightforward manner to general tree hierarchies.

Let streamS denote the data acquired by nodeN1.
Let F = {F1, F2, . . . , Fn} be a set ofn filters. We
first consider in-network processing for the following
basic query posed at the root nodeNm.

SELECT ∗ FROM S WHERE F1 ∧ F2 ∧ . . . ∧ Fn (1)

In Section 4 we extend our algorithms to deal with
queries that involve a multiway join of streams in ad-
dition to conjunctive filters. In this paper we do not

F1 F
2
(S)σ

F1 F
2
(S)σ

l2 =500

F1 F
2

σ
F3

(S)

l3=300l1 =700

N4
F4

=1/4γ3=1/2γ2γ1=1/5

Stream S
N1

1 2F , F
N

3F
3

Results
N2

Figure 3: Running Example

consider multiple queries together: The possibility
of shared computation among multiple queries yields
an even more complex operator placement problem
that we leave as future work.

An in-network query planfor the query in (1) is
simply a mapping of each filter inF to exactly one
node. Figure 3 shows a sample in-network query
plan for executing a query withn = 4 filters on
m = 4 nodes. Figure 3 also shows the data that is
transmitted along each network link. Each link trans-
mits only those tuples that have passed all filters ex-
ecuted so far. The cost of an in-network query plan
consists of two parts: the cost of executing the filters
on the various nodes, together with the cost of trans-
mitting the tuples over the network links. The ex-
act model used to evaluate the cost of an in-network
query plan is explained in the next section.

2.1 Cost Model

The cost of an in-network query plan is calculated
using the following three quantities:

1. Selectivity of filters: Associated with each fil-
ter F is a selectivitys(F) that is defined as the
fraction of the tuples in streamS that are ex-
pected to satisfyF . We assume for now that
the filters are independent, i.e., selectivity of a
filter remains the same irrespective of which fil-
ters have been applied earlier. Correlated filters
are dealt with in Section 3.3.

2. Cost of filters: Each filterF has a per-tuple
costc(F, i) of execution on nodeNi. To model
the fact that the nodes in the hierarchy have in-
creasing computational power, we assume that
the cost of any filter scales down by a factor
γi < 1 on moving from nodeNi to Ni+1 (see
Figure 2). That is,c(F, i+1) = γjc(F, i). Note
that even though we are supposing scale-down,
a decrease in computational power on moving
from nodeNi to Ni+1 is captured byγi > 1 and
can be incorporated into our approach directly.

3. Cost of network transmission: The cost of
transmitting a tuple on the network link from
nodeNi to Ni+1 is li (see Figure 2). We as-
sume thatli includes an appropriate multiplica-
tive factor to convert transmission cost into a
quantity that can be treated at par with compu-
tational cost.

Consider an in-network query planP for the query
in (1). Let P(F) denote the index number of the
node at which filterF is executed under planP.
Let Fi be the set of filters executed at nodeNi, i.e.,
Fi = {F | P(F) = i}. We assume that at each node
Ni, the set of filtersFi are executed in the optimal
sequence given by the following theorem [13].

Theorem 2.1. The optimal sequence to execute a set
of independent filters on a single node is in increas-
ing order ofrank, where rank of a filterF is given by
rank(F) = cost(F)

1−selectivity(F)
.

Consider a sequence ofn′ filters F ′ =
F ′

1, . . . , F
′
n′ . Let c(F ′, i) denote the cost per tuple

of executing this sequence at nodeNi. It is given by:

c(F ′, i) =
n′∑

j=1

(
c(F ′

j , i)
j−1∏
k=1

s(F ′
k)

)
(2)

Let r(Fi) denote the sequence of filters inFi in rank
order.1 Without loss of generality assume that the
data in streamS is acquired at the rate of one tuple
per some unit time. Then the cost per unit time of the
in-network planP is given by (assumel0 = 0):

c(P) =
m∑

i=1

∏
F |P(F)<i

s(F)
(
li−1 + c

(
r(Fi), i

))
(3)

Example 2.2. Consider the in-network query plan
shown in Figure 3. Let the selectivity of each filter be
1/2, and let the costs at nodeN1 of the filters be:

1Since the filters have different costs at different nodes, the
actual rank of a filter is node-dependent. However, since the cost
of each filter scales by the same factor going from one node to
the next, the rank order of filters remains the same at every node.
In Section 5.2 we discuss a more general model in which each
filter’s cost may scale differently across nodes.

F F1 F2 F3 F4

c(F, 1) 200 400 1300 2500

The cost scaling factors and the transmission costs
are as shown in Figure 3. Assume stream tuples are
acquired atN1 at unit rate.

Using equation(2), the execution cost of the se-
quenceF1, F2 of filters at nodeN1 is 200+ 1

2 ·400 =
400. Since two filters each with selectivity1/2 have
been applied, the rate of data transmitted fromN1 to
N2 and fromN2 to N3 is 1/4 of the unit rate each.
Thus the total transmission cost up to nodeN3 is
1
4(700 + 500) = 300. The per-tuple execution cost
of F3 at N3 is c(F3, 3) = γ1γ2c(F3, 1) = 130. Since
the rate intoN3 is 1/4, the execution cost ofF3 is
1
4 · 130 = 32.5. Similarly the transmission cost from
N3 to N4 and the execution cost ofF4 are calculated
to be37.5 and7.8 respectively. Thus the total cost is
c(P) = 400+300+32.5+37.5+7.8 = 777.8.

2.2 Problem Statement

Since each of then filters can be placed at any of
them nodes, there aremn possible in-network query
plans. The problem of operator placement for in-
network query processing is to efficiently choose the
least-cost plan among the exponential number of al-
ternatives.

Definition 2.3 (Operator Placement Problem).
For each filterF ∈ F , chooseP(F) ∈ {1, . . . , m}
such thatc(P) given by(3) is minimized.

3 Filter Placement

In this section, we consider solutions to the opera-
tor placement problem given by Definition 2.3. We
first assume independent filters and specify a local
greedy operator placement algorithm (Section 3.1).
We show that this algorithm does not always find
the globally optimal solution. We then provide an
optimal operator placement algorithm (Section 3.2),
and extend this algorithm for correlated filters (Sec-
tion 3.3) and tree hierarchies (Section 3.4).

3.1 Greedy Algorithm

For an in-network query planP, let c(P, i) denote
the part of the total costc(P) that is incurred at

node Ni. This cost includes not only the execu-
tion of filters at nodeNi, but also the transmission
of the filtered tuple stream from nodeNi to Ni+1.
c(P) =

∑m
i=1 c(P, i), and notice thatc(P, i) de-

pends only onF1, . . . ,Fi and not onFi+1, . . . ,Fm.
A simple but reasonable way to approach the op-

erator placement problem is the following greedy al-
gorithm. Start with nodeN1 and choose a set of fil-
tersF1 so thatc(P, 1) is minimized (explained in
the next paragraph). Then apply the approach re-
cursively with nodes{N2, . . . , Nm} and the set of
filtersF − F1. Our global objective is to minimize∑m

i=1 c(P, i); the greedy algorithm minimizes each
c(P, i) individually in increasing order ofi. In other
words, the greedy algorithm decides which filters
to apply by balancing filtering cost against the cost
of transmitting unfiltered data to the next node, but
it does not take into account how much cheaper it
would be to filter the data further up the hierarchy.

For minimizingc(P, 1) in the base case of the re-
cursion, we introduce a key idea behind all our al-
gorithms: modeling network links as filters. Logi-
cally, we construct a filter corresponding to each net-
work link, such that transmitting a tuple over the link
is equivalent in terms of cost to executing the con-
structed filter over the tuple. For cost evaluation, the
entire in-network query plan can then be treated as
executing a sequence of filters on a single node, en-
abling us to leverage previous work on filter order-
ing [3, 13, 17].

To minimizec(P, 1), model the network link from
nodeN1 to N2 as a filterF l

1 with s(F l
1) = 0 and

c(F l
1, 1) = l1. We now show thatc(P, 1) can be

written as the cost of executing the filters inF1 fol-
lowed by the filterF l

1 at nodeN1.

Lemma 3.1. Construct F l
1 with s(F l

1) = 0,
c(F l

1, 1) = l1. Thenc(P, 1) = c
(
r(F1) • F l

1, 1
)

where• denotes concatenation of sequences.

Proof. From (3),

c(P, 1) = c
(
r(F1), 1

)
+

∏
F∈F|P(F)<2

s(F)l1

= c
(
r(F1), 1

)
+

∏
F∈F1

s(F)c(F l
1, 1)

= c
(
r(F1) • F l

1, 1
)

We then orderF l
1 and the filters inF based on rank

(recall Theorem 2.1) and choose asF1 all the filters

that occur beforeF l
1 in rank order. Note that since

rank(F l
1) = l1, effectively we simply choose asF1

all filters that have rank< l1.

Theorem 3.2. To minimize c(P, 1), F1 =
{F | F occurs beforeF l

1 in r(F ∪ {F l
1})} where all

ranks are calculated at nodeN1.

Proof. SupposeF1 is chosen according to the theo-
rem statement. By Lemma 3.1,c(P, 1) = c

(
r(F1) •

F l
1, 1

)
. Sinces(F l

1) = 0, we can append any num-
ber of filters afterF l

1 without changing the cost of
executing the sequence. Thus we can write

c(P, 1) = c
(
r(F1) • F l

1 • r(F − F1), 1
)

(4)

Now suppose for contradiction that there is a differ-
ent set of filtersF ′

1 to be executed at nodeN1 and
a corresponding in-network query planP ′ such that
c(P ′, 1) < c(P, 1). Similar to (4), we can write

c(P ′, 1) = c
(
r(F ′

1) • F l
1 • r(F − F ′

1), 1
)

(5)

The right sides of (4) and (5) give the execution cost
of the same set of filtersF ∪{F l

1} but in different se-
quences. By the choice ofF1, the sequence in (4) is
rank ordered, but that in (5) is not. By Theorem 2.1,
c(P, 1) < c(P ′, 1). Thus we get a contradiction.

We illustrate the operation of the greedy algorithm
by an example.

Example 3.3. Consider operator placement using
the greedy algorithm for Example 2.2. The ranks of
F1, . . . , F4 at N1 are 400, 800, 2600, and5000 re-
spectively. The rank ofF l

1 is l1 = 700. ThusF1 is
chosen as{F1}. The ranks ofF2, . . . , F4 at N2 are
obtained by scaling down the ranks atN1 by γ1, so
they are160, 520, and 1000. Only rank(F2) < l2,
thusF2 = {F2}. Continuing in this fashion, we ob-
tain F3 = {F3} andF4 = {F4}. For this plan, we
find c(P) = 792.8 by (3).

The greedy algorithm makes very local decisions.
Thus it is not surprising that the greedy algorithm
does not always produce the globally optimal solu-
tion. For instance,c(P) = 792.8 in Example 3.3 is
greater thanc(P) = 777.8 in Example 2.2.

3.2 Optimal Algorithm

In the greedy algorithm of Section 3.1, network links
are modeled as filters with selectivity 0. This ap-
proach enables us to capture the transmission cost

of the link, but the remainder of the tuple process-
ing cost (at nodes further up in the hierarchy) is not
captured. Thus we can only get an expression for
c(P, 1) in terms of the execution cost of a sequence
of filters (Lemma 3.1), but not an expression for the
entirec(P). The optimal algorithm we present relies
on obtaining an analogous expression forc(P).

Assumeγi ≤ 1 for eachi (γi > 1 is handled
in Section 3.2.2). Sincec(F, i + 1) = γic(F, i),
transmitting data on the link from nodeNi to Ni+1

cuts down by a factorγi the per-tuple cost of any
filter applied subsequently. In terms of cost per
unit time, this cost scale-down is equivalent to the
stream rate slowing down by a factorγi, but the fil-
ter costs themselves remaining unchanged. Hence
the link from nodeNi to Ni+1 can be modeled as
a filter F l

i with s(F l
i) = γi. Additionally, we set

c(F l
i , 1) = li(

∏i−1
j=1 γj)−1. Intuitively, the per-tuple

cost of traversing the link isli, even after the pre-
vious network links have been traversed. The term
(
∏i−1

j=1 γj)−1 merely compensates for the scale-down

produced by filtersF l
1, . . . , F

l
i−1. We can now write

c(P) in terms of the execution cost of a sequence of
filters (assume all ranks are calculated atN1).

Lemma 3.4. For i ∈ {1, . . . , m − 1} constructF l
i

with s(F l
i) = γi, c(F l

i , 1) = li(
∏i−1

j=1 γj)−1 . Then

c(P) = c
(
r(F1)•F l

1•r(F2)•. . .•F l
m−1•r(Fm), 1

)
where• denotes concatenation of sequences.

Proof. The result follows by noting that
c(r(Fi), i) =

∏i−1
j=1 γj · c(r(Fi), 1) and per-

forming suitable manipulation ofc(P) (given by (3))
as in Lemma 3.1. The detailed proof is omitted.

Suppose for now that the ranks of the sequence
of filters F l

1, . . . , F
l
m−1 (modeling links) are in non-

decreasing order. Then we have the following result
analogous to Theorem 3.2. The proof is very similar
to that of Theorem 3.2 and hence is omitted.

Lemma 3.5. Suppose rank(F l
i) < rank(F l

i+1) for
eachi ∈ {1, . . . , m − 2}. Denote byF ′ the filter
sequenceF l

0 • r(F ∪ {F l
1, . . . , F

l
m−1}) • F l

m. Then
c(P) is minimized when:

Fi = {F |F occurs betweenF l
i−1 andF l

i in F ′}
In general the ranks ofF l

1, . . . , F
l
m−1 may not be

in non-decreasing order. To deal with such cases, we
introduce the concept of “short-circuiting”.

Ni−1
γ i−1 Ni Ni+1

γ i

l i−1 l i

Ni−1

l i−1 l i+

Ni+1
γiγ i−1

ion short−circuit of node N

Figure 4: Short-Circuiting

3.2.1 Short-Circuiting

Suppose rank(F l
i−1) > rank(F l

i) for somei. We
show that in the optimal in-network query plan in
this scenario, no filter is executed at nodeNi.

Lemma 3.6. If rank(F l
i−1) > rank(F l

i) for somei ∈
{2, . . . , m − 1}, then in the optimal planFi = ∅.

Proof. Suppose rank(F l
i−1) > rank(F l

i) and in the
optimal in-network query planP, Fi 6= ∅. Consider
the alternate query plansP ′ andP ′′ where the filters
in Fi have been moved to nodeNi−1 andNi respec-
tively. We have

c(P) = a1

(
li−1 + c(r(Fi), i) + a2li

)
+ a3

wherea1 =
∏

F |P(F)<i s(F), a2 =
∏

F |F∈Fi
s(F),

anda3 denotes the sum of the other terms inc(P)
from (3). Similarly:

c(P ′) = a1

(
c(r(Fi), i)γ−1

i−1 + a2(li−1 + li)
)

+ a3

c(P ′′) = a1

(
li−1 + li + γic(r(Fi), i)

)
+ a3

SinceP is optimal, we must havec(P) < c(P ′) and
c(P) < c(P ′′). Substituting forc(P), c(P ′), and
c(P ′′) and simplifying, we get:

li−1γi−1

1 − γi−1
<

li
1 − γi

(6)

(6) implies that rank(F l
i−1) < rank(F l

i) which is a
contradiction.

If Fi is guaranteed to be empty in the optimal
query plan, we can modify the network topology
by “short-circuiting” nodeNi as shown in Figure 4.
Logically, nodeNi is removed,Ni−1 is connected to
nodeNi+1 by a link having costli−1+li, and the cost
scale-down factor from nodeNi−1 to Ni+1 is set to
γi−1γi. At each short-circuit the number of nodesm
decreases by 1.

Algorithm OPT FILTER
1. while (∃i | γi > 1)
2. short-circuit nodeNi+1

3. while (true)
4. for i = 1 to m − 1
5. s(F l

i) = γi andc(F l
i , 1) = li(

∏i−1
j=1 γj)−1

6. if
(∃i | rank(F l

i−1) > rank(F l
i)

)
7. short-circuit nodeNi

8. else break
9. F ′ = F l

0 • r(F ∪ {F l
1, . . . , F

l
m−1}) • F l

m

10. for i = 1 to m
11. Fi = {F | F occurs betweenF l

i−1 andF l
i in F ′}

Figure 5: Optimal Operator Placement Algorithm

We can continue short-circuiting on the modified
topology until there does not exist anyi for which
rank(F l

i−1) > rank(F l
i). At that point, Lemma 3.5

can be applied to yield the optimal solution.

3.2.2 Handling Cost Scaleup

So far we have assumedγi ≤ 1 for each i. If
γi > 1, it is easy to see that in the optimal solu-
tion Fi+1 = ∅, as follows. If any filters are executed
at nodeNi+1 they can be moved to nodeNi. The
new plan will reduce the computational cost (since
c(F, i) < c(F, i + 1)) as well as the transmission
cost (since more filters are applied earlier reducing
the amount of data transmitted). Thus, just as in Sec-
tion 3.2.1, ifγi > 1, we can short-circuit nodeNi+1

(if γm−1 > 1 we can simply delete nodeNm). We
can continue short-circuiting untilγi ≤ 1 for eachi.

3.2.3 Summary and Example

A summary of the entire algorithm is given in Fig-
ure 5. Its running time isO((m + n) log(m + n))
due to the sorting of filters in rank order in line 9.

Example 3.7. Continue with Example 2.2. We first
construct a filter for each network link (line 5):

i 1 2 3
c(F l

i , 1) 700 2500 3000
s(F l

i) 1/5 1/2 1/4
rank(F l

i) 875 5000 4000

We find that rank(F l
2) > rank(F l

3). Thus, we can
short-circuit N3 (line 7). On short-circuiting, we

2
F , F1

N1

700

1/5 1/8

800 F4

N4F3
N2

Figure 6: Optimal Plan for Example 2.2 (after short-
circuitingN3)

obtain a new link with transmission cost800 and
scale-down factor1/8 (Figure 6). The filter cor-
responding to this link (denote it byF l

2,4) has cost
4000, selectivity1/8 and hence rank4571.4. Since
rank(F l

1) < rank(F l
2,4), no more short-circuiting is

required. The ranks ofF1, . . . , F4 are 400, 800,
2600, and 5000. Thus the rank order of filters is
F1, F2, F

l
1, F3, F

l
2,4, F4 (line 9). F1 = {F1, F2},

F2 = {F3}, andF4 = {F4} (line 11). SinceN3

has been short-circuited,F3 = ∅. For this plan,
c(P) = 747.8, that is lower than the costs in Ex-
amples 2.2 and 3.3, and can be verified to be opti-
mal.

3.3 Correlated Filters

We now consider operator placement when the filters
in F may be correlated, i.e., the selectivity of a fil-
ter on a stream may depend on the filters that have
already been applied. We define theconditional se-
lectivity of a filter F given a set of filtersQ ⊆ F ,
denoteds(F |Q), as the fraction of tuples that satisfy
F given that they satisfy all the filters inQ. Note that
if F ∈ Q, s(F |Q) = 1.

When filters are correlated, Theorem 2.1 no longer
holds. In fact, the problem of optimal ordering of
correlated filters at a single node has been shown to
be NP-hard [9, 17]. The same work also gives a nat-
ural greedy algorithm based on conditional selectiv-
ity (Figure 7) that is guaranteed to find an ordering
having a cost at most4 times the optimal cost. The
algorithm defines the conditional rank for each filter
(line 3) and at each step, picks the filter having the
smallest conditional rank to be executed next. It is
also shown that this approximation ratio of4 is the
best possible unlessP = NP .

Our problem of optimally executing a set of corre-
lated filters at multiple nodes is clearly at least as dif-
ficult as the single-node problem, and hence is NP-
hard. We show in this section that the same approx-
imation ratio of4 can be obtained for our problem
setting. Since Figure 7 is the best ordering for corre-

Algorithm CORRELATED
F : Set of correlated filters to be ordered
1. Q = ∅
2. while (Q 6= F)

3. conditional rank(F) = cost(F)
1−s(F |Q) ∀F ∈ F

4. Fmin = F ∈ F that has smallest conditional rank
5. chooseFmin to be executed next;Q = Q∪ {Fmin}

Figure 7: Ordering of Correlated Filters [9, 17]

lated filters that can be found efficiently, we assume
that in any in-network query plan, the set of filters at
any node are executed in the order given by Figure 7.

We again model the network links as filters with
cost and selectivity as before (given by Lemma 3.4).
Additionally, the filters that model network links are
independentof all filters, i.e., for eachi, s(F l

i |Q) =
s(F l

i) for anyQ such thatF l
i /∈ Q. Assume as in

Section 3.2 that all ranks are calculated at nodeN1.
First we show that even in the presence of correlated
filters, short-circuiting (Section 3.2.1) is still valid.

Lemma 3.8. Let filters in F be correlated. If
rank(F l

i−1) > rank(F l
i) for somei ∈ {2, . . . , m −

1}, then in the optimal solutionFi = ∅.

Proof. SupposeFi 6= ∅. Replace the filters in
Fi by a single filterF having equivalent per-tuple
cost and selectivity as the filter sequence at node
Ni. Now consider rank(F), which may depend on
the filters executed at nodesN1, . . . , Ni−1. Since
rank(F l

i−1) > rank(F l
i), either rank(F) > rank(F l

i)
(in which case moveF to Ni+1) or rank(F) <
rank(F l

i−1) (in which case moveF to Ni−1). Note
that this movement ofF does not change the rank of
any filter since the ranks ofF l

i−1 andF l
i are indepen-

dent of all filters and the rank ofF depends only on
the filters executed at nodesN1, . . . , Ni−1 which re-
main the same. Now using a similar argument as in
the proof of Lemma 3.6, we see that this movement
of F cannot increase the total cost of the solution.
ThusFi = ∅ in the optimal solution.

Theorem 3.9. Let filters inF be correlated. Let
r(F ′) denote the ordering of a set of filtersF ′ as
obtained by algorithm CORRELATED (Figure 7).
With this new interpretation ofr(F ′), algorithm
OPT FILTER (Figure 5) gives a 4-approximation to
the optimal operator placement.

Proof. With the new interpretation ofr(F ′) it is easy
to see that Lemma 3.4 holds in the presence of cor-
related filters. After short-circuiting, the ranks of
the filtersF l

, . . . , F l
m−1 are non-decreasing. Hence

when the filters are ordered (by algorithmCORRE-
LATED) in line 9 of algorithmOPT FILTER, the fil-
ters corresponding to the network links automatically
occur in the desired order, and no ordering restric-
tions on the filters need to be imposed. Since algo-
rithm CORRELATEDis a 4-approximation to the op-
timal ordering in the case when there are no ordering
restrictions [17], the result follows.

3.4 Extension to Tree Hierarchies

So far we have restricted our attention to the data
acquired by only one of the leaf nodes or sensors
of Figure 1. LetSi denote the stream of data from
the ith sensor. We have shown how to optimize the
query (1) over any single streamSi. In reality, query
(1) may be posed over data gathered by any number
of sensors, i.e., the query isσF (S1 ∪ . . . ∪ Sk) for
k sensors. This query can be written as the union
σF (S1) ∪ . . . ∪ σF (Sk). Each of the queries in
this union operates on different data, so there is no
opportunity for sharing computation or transmission
among these queries. Hence optimizing their com-
bined execution is equivalent to optimizing each of
them separately, for which we use the algorithm of
Section 3.2.

4 Joins
Recall the network topology of Figure 2. Now sup-
pose the data acquired by sensor nodeN1 is in the
form of k different data streams (e.g., a tempera-
ture stream, a light stream, a vibration stream, and so
on). In this section, we consider in-network process-
ing for queries that involve a sliding-window join [2]
of these streams. We assume that the join of allk
streams is performed at a single node by theMJoin
operator [14]; consideration of join trees is left as
future work. For ease of presentation, we assume
k = 2; extension to generalk is straightforward.

Let S1 andS2 be the streams acquired by sensor
nodeN1. We consider the query:

SELECT ∗ FROM (S1[W1] 1 S2[W2])
WHERE F1 ∧ . . . ∧ Fn (7)

whereW1 andW2 represent the lengths of the win-
dows (time-based or tuple-based) on streamsS1 and
S2, andF = {F1, . . . , Fn} is a set of filters. We
extend the cost model of Section 2.1 to include the
selectivity and cost of the join operator.

1. Selectivity: The selectivitys(1) of the join is
defined as the fraction of the cross product that
occurs in the join result. Thus if streamsS1 and
S2 have rates ofr1 andr2 tuples per unit time
coming into the join operator, the output of the
join is at rates(1)r1r2.

2. Cost: The cost per unit time of performing the
join is given by

cost(1) = a1r1 + a2r2 + a3r1r2 (8)

wherea1, a2, anda3 are constants. This form
arises because a constant amount of work must
be done per input tuple (thereforea1r1 + a2r2),
and similarly a constant amount of work to out-
put every join tuple (thereforea3r1r2). Just as
the filter costs, the join cost also scales down by
a factorγi on moving from nodeNi to Ni+1.

Given cost and selectivity for the join operator, an
expression analogous to (3) for the total cost of an
in-network query plan for query (7) can be written.

Divide the set of filtersF into F1,F2, andF1,2.
For i = 1, 2, F i consists of those filters that may be
applied either onSi before the join or on the join re-
sult after the join (denote|F i| by ni). F1,2 can be
applied only on the join result. We assume that the
join and the filters are independent, i.e., the selectiv-
ity of any operator does not depend on the operators
applied earlier. We have the following result (similar
to Theorem 5.4 in [3]). We omit the proof since it is
mostly an adaptation of the proof in [3] to incorpo-
rate network links and cost changes between nodes.

Theorem 4.1. Given join cost of the form(8), in the
optimal in-network query plan for(7), the filters in
F1 (or F2) must be executed in rank order.

Let F 1
1 , . . . , F 1

n1
be the filters inF1 in rank order.

By Theorem 4.1, in the optimal plan there exists ani
such that firstF 1

1 , . . . , F 1
i are executed on streamS1,

followed by the join, and thenF 1
i+1, . . . , F

1
n1

on the
join result (similarly forF2). Additionally, the join

Algorithm OPT FILTER JOIN
1. P∗ = NULL , c(P∗) = ∞
2. for i = 0 to n1, j = 0 to n2, k = 1 to m
3. Construct newP with join at nodeNk

4. Optimally placeF 1
1 , . . . , F 1

i at nodesN1, . . . , Nk

5. Optimally placeF 2
1 , . . . , F 2

j at nodesN1, . . . , Nk

6. Optimally place remaining filters atNk, . . . , Nm

7. if
(
c(P) < c(P∗)

) P∗ = P
8. returnP∗

Figure 8: Operator Placement for Queries with Joins

can be executed at each of them nodes. Our algo-
rithm (Figure 8) finds the optimal plan by an exhaus-
tive search through these options. Lines 4-6 are each
an invocation of algorithmOPT FILTER. Hence the
algorithm is polynomial, and a simple implementa-
tion runs inO(n1n2m(n + m)log(n + m)) time.

5 Extensions

In this section, we define some interesting variations
of the basic filter placement problem as future work,
and we demonstrate their hardness.

5.1 Constrained Nodes

In some scenarios we may have constraints on the
total amount of filter execution and transmission cost
that certain nodes can incur. Given cost constraints
at each node, a new problem is to find a feasible in-
network query plan that satisfies these constraints, if
such a plan exists. Recall the definition ofc(P, i)
from Section 3.1.

Definition 5.1 (Feasible Operator Placement).
Given cost constraintCi at nodeNi, find an in-
network query planP such thatc(P, i) ≤ Ci for
eachi or returnNOis no suchP exists.

Theorem 5.2. The feasible operator placement
problem is NP-hard.

Proof. By reduction fromPARTITION[11].

In cost-constrained environments, a further desir-
able property might be load balancing: We might
prefer a plan having overall higher cost if it places
roughly equal load on each node, as compared to a
plan that has lower cost but loads a few nodes very

heavily or up to capacity. Load balancing may be
particularly applicable when the system is required
to support a number of concurrent queries.

Definition 5.3 (Load-Balancing). Given cost con-
straintCi at nodeNi, find the in-network query plan
P that minimizesmax1≤i≤m{c(P, i)/Ci}.

Clearly, the load balancing problem is at least
as hard as the feasible operator placement problem,
since ifmax{c(P, i)/Ci} < 1 we have found a fea-
sible operator placement. Thus, the load balancing
problem is NP-hard.

5.2 Per-Filter Cost Scaling

So far we have assumed that the cost of each fil-
ter scales down by a factorγi from node Ni to
Ni+1. However, the cost of different filters may
change differently from one node to the next, i.e.,
c(F, i + 1)/c(F, i) may be different for differentF .
For example, if a filterF accesses external data that
resides close to nodeNi, it may be more expensive to
executeF at nodeNi+1 than at nodeNi. Meanwhile,
other filters may be cheaper at nodeNi+1 simply be-
causeNi+1 has higher computational power. When
we have per-filter cost scaling, the technique we used
of modeling network links as filters no longer ap-
plies. Whether the problem becomes NP-hard with
per-filter cost scaling remains an open question.

6 Related Work

A considerable amount of work has focused on ex-
tending centralized data stream query processing
systems [2] to a distributed setting, e.g., Borealis [1],
HourGlass [18], IrisNet [7], and NiagaraCQ [4].
Most of this work considers internet-style network
topologies consisting of nodes with ample computa-
tional power. Consequently, the work focuses on op-
timizing network usage and minimizing latency, and
is not concerned with computational overload. Even
when computational overload is considered, e.g, in
[5], only heuristics are provided to move load from
one node to another.

Our paper addresses the considerably different
scenario of data acquisition environments [10],
where optimization of both communication and com-
putation is required. There has been some previ-
ous work on in-network processing in these environ-

ments, but it focusses primarily on aggregation [15],
and has not considered expensive filters or joins. Ac-
quisitional query processing [16] focusses on where,
when, and how often data is physically acquired and
delivered to the query operators, but the problem of
operator placement is not dealt with.

In classical relational query optimization, filters
are usually assumed to be inexpensive, and a com-
mon optimization heuristic is to push filters as close
to the leaf operators as possible. Query optimiza-
tion and site selection for distributed databases is
also well studied [8, 12], again assuming inexpen-
sive filters. Expensive filters have been considered in
the context of query optimization with user-defined
predicates [3, 13], but only in a centralized setting.

7 Conclusions

This paper addresses the problem of query process-
ing in sensor data environments with progressively
increasing computational power and network band-
width up a hierarchy of processing nodes. Data is ac-
quired at low-capability edge devices and transmitted
up the hierarchy to the root, where queries are posed
and results collected. To reduce bandwidth, query
operators can be executed lower in the hierarchy, typ-
ically at the expense of higher computational cost.
We address the problem of balancing computational
cost against network bandwidth to obtain an optimal
operator placement algorithm that minimizes overall
cost. We show that the problem is tractable, but that a
greedy algorithm can be suboptimal. We provide an
optimal algorithm for uncorrelated filters, then ex-
tend our approach to correlated filters and multiway
stream joins. Finally, we pose related open problems
for future research.

References
[1] Y. Ahmad and U. Cetintemel. Network-aware query pro-

cessing for stream-based applications. InProc. of the 2004
Intl. Conf. on Very Large Data Bases, pages 456–467,
Sept. 2004.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems. In
Proc. of the 2002 ACM Symp. on Principles of Database
Systems, pages 1–16, June 2002.

[3] S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicates.ACM Trans. on Database Systems,
24(2):177–228, 1999.

[4] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:
A scalable continuous query system for internet databases.
In Proc. of the 2000 ACM SIGMOD Intl. Conf. on Man-
agement of Data, pages 379–390, May 2000.

[5] M. Cherniack et al. Scalable distributed stream processing.
In Proc. First Biennial Conf. on Innovative Data Systems
Research (CIDR), Jan. 2003.

[6] C. Cranor et al. Gigascope: high performance network
monitoring with an SQL interface. InProc. of the 2002
ACM SIGMOD Intl. Conf. on Management of Data, page
623, May 2002.

[7] A. Deshpande, S. Nath, P. Gibbons, and S. Seshan. Cache-
and-query for wide area sensor databases. InProc. of the
2003 ACM SIGMOD Intl. Conf. on Management of Data,
pages 503–514, 2003.

[8] R. Epstein, M. Stonebraker, and E. Wong. Distributed
query processing in a relational data base system. InProc.
of the 1978 ACM SIGMOD Intl. Conf. on Management of
Data, pages 169–180, May 1978.

[9] U. Feige, L. Lov́asz, and P. Tetali. Approximating min-
sum set cover.Algorithmica, 2004.

[10] M. Franklin et al. Design Considerations for High Fan-in
Systems: The HiFi Approach. InProc. Second Biennial
Conf. on Innovative Data Systems Research (CIDR), Jan.
2005. (To appear).

[11] M. Garey and D. Johnson.Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., 1979.

[12] L. Haas et al. R*: A Research Project on Distributed Rela-
tional DBMS. IEEE Data Engineering Bulletin, 5(4):28–
32, 1982.

[13] J. Hellerstein and M. Stonebraker. Predicate migration:
Optimizing queries with expensive predicates. InProc.
of the 1993 ACM SIGMOD Intl. Conf. on Management of
Data, pages 267–276, 1993.

[14] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window
joins over unbounded streams. InProc. of the 2003 Intl.
Conf. on Data Engineering, Mar. 2003.

[15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TAG: A tiny aggregation service for ad-hoc sensor net-
works. InProceedings of the 5th USENIX Symposium on
OSDI, Dec. 2002.

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor net-
works. InProc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Data, pages 491–502, 2003.

[17] K. Munagala, S. Babu, R. Motwani, and J. Widom. The
pipelined set cover problem.Proc. Intl. Conf. Database
Theory, 2005. (To appear).

[18] P. Pietzuch et al. Path optimization in stream-based overlay
networks. Technical report, Harvard University, 2004.

