Operator Placement for In-Network Stream Query Processing

Utkarsh Srivastava Kamesh Munagala Jennifer Widom
Stanford University Duke University Stanford University
usriv@cs.stanford.edu kamesh@cs.duke.edu widom@cs.stanford.edu

Abstrgct Query ||Results

3 yincreasing
In sensor networks, data acquisition frequently takes | computational
place at low-capability devices. The acquired data is power,
then transmitted through a hierarchy of nodes hav- bttt

ing progressively increasing network bandwidth and§
computational power. We consider the problem of!
executing queries over these data streams, posed at Figure 1: Sensor Data Processing

the root of the hierarchy. To minimize data transmis-

sion, it is desirable to perform “in-network” querymay exhibit similar general characteristics.
processing: do some part of the work at intermedi- Typically, queries are posed and results collected
ate nodes as the data travels to the root. Most paéthe root of the hierarchy. One simple approach is
vious work on in-network query processing has f&0 transmit all data acquired at the sensors through
cused on aggregation and inexpensive filters. In tiie hierarchy to the root, then perform all query pro-
paper, we address in-network processing for querk@ssing at the root. However, if queries produce sig-
involving possibly expensive conjunctive filters, an@lificantly less data than they consume—because of
joins. We consider the problem of placing operatofi§ering, aggregation, or low-selectivity joins—then
along the nodes of the hierarchy so that the overtllis approach may pose considerable unnecessary
cost of computation and data transmission is milurden on network bandwidth.In-network query
mized. We show that the problem is tractable, gigsocessingpushes some or all of the query execu-
an optimal algorithm, and demonstrate that a simpl@n task to nodes lower in the hierarchy, in order to
greedy operator placement algorithm can fail to fir@duce overall network costs [15]. In general, find-
the optimal solution. Finally we define a number dRg the best point in the hierarchy at which to per-
interesting variations of the basic operator placeméd@tm specific processing is a difficult problem: Plac-

problem and demonstrate their hardness. ing work lower in the hierarchy reduces transmission
costs but imposes more burden on lower-capability
1 Introduction devices. The goal is to properly balance these op-

posing effects to minimize overall cost.

We consider query processing in environmentsPrevious work on in-network query processing has
where data is collected at “edge devices” with linfocused on queries in which data reduction occurs
ited capabilities, such as sensors. Collected datdbécause of aggregation operators [15], or through in-
transmitted through a hierarchy of network nodexpensive filtering that is not a burden on edge de-
and links with progressively increasing computaices (so all filters are pushed to the leaves). We con-
tional power and network bandwidth, as shown &ider queries that may involve expensive predicates,
Figure 1. The *high fan-in” environment addresseslich as text, image, or video filtering, or lookups to

by the BerkeleyHiFi project [10] is one example,remote sources. For these operators it may not be
but other scenarios that involve data acquisition abdst (or even possible) to filter at low-capability sen-

subsequent processing, e.g., network monitoring [6],

computational computational computational
cost scale-down cost scale-doweost scale-down

yl =N y2 =N . wn_'ix
Data N N N
Aquisition—+ C[2 .o @Result:
(Stream) transmission transmission transmission
cost Iy cost Iy cost Im-1

increasing computation power and bandwidth

Figure 2: Basic Scenario and Cost Model

sors. Our objective is to place each filter operator ate We extend our algorithm to include operator
the “best” node in the hierarchy for that filter, based placement for a multiway stream join together
on its selectivity and cost, and considering the com- with filters (Section 4).

putational capabilities of the nodes up the hierarchy . . L
: - e We identify several variations on the problem
against the burden of bringing the data to each node. . .
. , and in some cases show their hardness (Sec-
Suppose we have an-level hierarchy and: fil- . . .
, o tion 5). We consider nodes with resource con-
ters in our query. For one sensor’s input stream . .
straints, load balancing across nodes, and a

there arem™ possible filter placements for process- :
. . more complex cost model for how filter costs
ing the data as it travels to the root. We show that .

may vary across different nodes.

nevertheless the operator placement problem has a
polynomial-time optimal solution. We provide aiRelated work and conclusions are presented in Sec-
optimal algorithm, and show that a simpler greedypns 6 and 7.
algorithm can fail to find the optimal solution.
A_ key idea in our work is to model network linksy Preliminaries
as filters. Then we can address our overall problem
as one of filter ordering on a single node, but with/e begin by considering data acquired by only one
precedence constraints for those filters that are maodthe leaf nodes of Figure 1 and focus on in-network
eling links. We start by consideringncorrelatedfl- query processing over this data. As this data is trans-
ters, i.e., filters whose selectivity is independent ofitted up the hierarchy, the basic network topology
the other filters, and then extend our algorithm to coke need to consider (shown in Figure 2) consists of
related filters. In both cases, we show how the pre@elinear chain of node®';, No, ..., N,,, wherem
dence constraints can be dealt with so that known rethe number of levels in the hierarchy. In relation
sults on filter ordering [13, 17] can be reused. Aftéo Figure 1, the leftmost nod¥®; corresponds to the
addressing queries with filters alone, we extend quuint of acquisition, while the rightmost nod¥g,,
algorithm to include multiway joins, showing how ta@orresponds to the root of the hierarchy. Each node
decide where a join operator should be placed oph5 transmits only to nodeV;, ;. We consider the
mally with respect to the query’s filter operators. linear hierarchy merely for ease of presentation; in
The overall contributions of this paper are: Section 3.4 we show how our algorithms extend in a

e We define the problem of operator placemeﬁ{raightforward manner to general tree hierarchies.
for in-network processing of queries with ex- Let streams denote the data acquired by natie.

pensive filters (Section 2). Let 7 = {F, F, ..., Fr,} be a set oh filters. We

first consider in-network processing for the following
e We describe a greedy algorithm that can faiasic query posed at the root nalfg,.

to find the globally optimal solution to the

operator placement problem, then present aSELECT x FROM SWHEREF; AFo A...AFy (1)

polynomial-time optimal algorithm for uncorre-

lated filters. We extend our algorithm to providéh Section 4 we extend our algorithms to deal with

the best possible approximation for correlatgtiieries that involve a multiway join of streams in ad-

filters (Section 3). dition to conjunctive filters. In this paper we do not

s A e

; ‘ ‘ o S ‘
T RS Na) TR N R (N
Stream S K : F F Results

1,=700 ,=500

Figure 3: Running Example

consider multiple queries together: The possibility3. Cost of network transmission The cost of
of shared computation among multiple queries yields transmitting a tuple on the network link from
an even more complex operator placement problem nodeN; to N;. is l; (see Figure 2). We as-

that we leave as future work. sume that; includes an appropriate multiplica-
An in-network query plarfor the query in (1) is tive factor to convert transmission cost into a
simply a mapping of each filter iff to exactly one quantity that can be treated at par with compu-

node. Figure 3 shows a sample in-network query tational cost.

plan for executing a query with = 4 filters on Consider an in-network query plghfor the query
m = 4 nodes. Figure 3 also shows the data thatiig (1). Let P(F) denote the index number of the
transmitted along each network link. Each link trangode at which filterF is executed under pla®.
mits only those tuples that have passed all filters axt F; be the set of filters executed at nodg, i.e.,
ecuted so far. The cost of an in-network query plar, = {F | P(F) = i}. We assume that at each node
consists of two parts: the cost of executing the filtepg;, the set of filtersF; are executed in the optimal

on the various nodes, together with the cost of trargquence given by the following theorem [13].
mitting the tuples over the network links. The ex]—_

: eorem 2.1. The optimal sequence to execute a set
act model used to evaluate the cost of an in-network. . . o
. . . . of independent filters on a single node is in increas-
query plan is explained in the next section.

ing order ofrank where rank of a filtef is given by

_ costr)
2.1 Cost Model rank(F) = 1-selectivityr) - O
The cost of an in-network query plan is calcuI<';1tedlcor‘3i0|/er a sequence of/ filters F' =
using the following three quantities: Fy,...,F,,. Letc(F',i) denote the cost per tuple

of executing this sequence at nalie It is given by:

’

1. Selectivity of filters: Associated with each fil-

ter F' is a selectivitys(F') that is defined as the ;. ;. g y

fraction of the tuples(il’)l strearfi that are ex- () = Z (C(Fj’l)]IIIS(F’“)> @
pectgd to sat|§f3F. we assume for now that Letr(F;) denote the sequence of filtersHpin rank
the filters are independent, i.e., selectivity of Shder! Without loss of generality assume that the
filter remains the same irrespective of which filya4 in streans is acquired at the rate of one tuple
ters have been applied earlier. Correlated filtgsgr some unit time. Then the cost per unit time of the
are dealt with in Section 3.3. in-network planP is given by (assumég = 0):

j=1

2. Cost of filters: Each filter /" has a per-tuple . (p) = . s(F)(Lizy + c(r(Fy), i ©)
coste(F, i) of execution on nodé&V;. To model ; F|P]E—}[)<i (vl))

the fapt that the nqdes in the hierarchy have iE'xample 2.2. Consider the in-network query plan
creasing computgtlonal POWer, we assume ths%town in Figure 3. Let the selectivity of each filter be
the cost of any filter scales down by a fact

Olr 2, and let the costs at nod¥; of the filters be:
~; < 1 on moving from nodeV; to N, (see /2 !

Figure 2). Thatisg(F,i+1) = v;c(F, i). Note !Since the filters have different costs at different nodes, the

that even though we are supposing Scale—dov(i'ﬁtual rank of a filter is node-dependent. However, since the cost
of each filter scales by the same factor going from one node to

a decrease in comp_utatlonal POWEr on MOVIRL hext, the rank order of filters remains the same at every node.
from nodeN; to IV; 1 is captured byy; > 1and |n Section 5.2 we discuss a more general model in which each
can be incorporated into our approach directlyilter's cost may scale differently across nodes.

F F | Fy | F3 Fy node N;. This cost includes not only the execu-
c(F,1) | 200 | 400 | 1300 | 2500 tion of filters at nodeV;, but also the transmission

Th i ling fact dthe t . of the filtered tuple stream from nodg; to N, ;.
e cost scaling factors and the transmission cosf) = S ¢(P.4), and notice that(P. i) de-

are as shown in Figure 3. Assume stream tuples C—H nds only orF, F, and not onF;, s
geeeydg i1y 'm:

aclcju!red ath t'r.ﬂ uglt rtz;l‘te. i t of th A simple but reasonable way to approach the op-
sing equa |o_n(), the execu 1on coslo € S€rator placement problem is the following greedy al-
quencer’, F> of filters at nodeV; is 200+ 5 - 400 =

) . . i gorithm. Start with nodeéV; and choose a set of fil-
400. Since two filters each with selectivity2 have

: : ters 1 so thate(P, 1) is minimized (explained in
been applied, the rate of data transmitted frafmto
the next paragraph). Then apply the approach re-
Ny and fromN, to N3 is 1/4 of the unit rate each. Xt paragraph) PRy bb

o " cursively with nodeg[Ns, ..., N,,} and the set of
Thus the total transmission cost up to nodg is y SN2 m}

1700 + 500) — 300. Th ol i filters 7 — F;. Our global objective is to minimize
Oy, T P e S, 7. e redy aioritm minimizs ch

the rate intoNa is 1/4. th i Lo | ¢(P, i) individually in increasing order of. In other
1 € rate Imo.vs 1S ./ » the exectition cost ats 1S words, the greedy algorithm decides which filters
7 - 130 = 32.5. Similarly the transmission cost fro

. Mo apply by balancing filtering cost against the cost
N3 to Ny and the execution cost & are calculated ¢ transmitting unfiltered data to the next node, but

to be37.5 and7.8 respectively. Thus the total cost I% does not take into account how much cheaper it
¢(P) =400+300+32.54+37.5+7.8 =777.8. O

would be to filter the data further up the hierarchy.
For minimizingc(P, 1) in the base case of the re-
2.2 Problem Statement cursion, we introduce a key idea behind all our al-

. , orithms: modeling network links as filters. Logi-
Since each of the filters can be placed at any o , .
n o cally, we construct a filter corresponding to each net-
them nodes, there ar&™ possible in-network query

.work link, such that transmitting a tuple over the link
plans. The problem of operator placement for in- . . .
. iy is equivalent in terms of cost to executing the con-
network query processing is to efficiently choose th : .
. sfructed filter over the tuple. For cost evaluation, the

least-cost plan among the exponential number of al- .~ ™.
ternatives entire in-network query plan can then be treated as

executing a sequence of filters on a single node, en-

Definition 2.3 (Operator Placement Problem). abling us to leverage previous work on filter order-

For each filter ' € F, chooseP(F) € {1,...,m} ing[3,13,17].

such thatz(P) given by(3) is minimized. 00 Tominimizec(P, 1), model the network link from
node N to N, as a filter /! with s(F}) = 0 and

. c(Fl,1) = I;. We now show that(P,1) can be
3 Filter Placement written as the cost of executing the filters fol-

. . . . lowed by the filterF! at nodenN;.
In this section, we consider solutions to the opera- y 1 !

tor placement problem given by Definition 2.3. Weemma 3.1. Construct F! with s(F}) = 0,
first assume independent filters and specify a loe&F},1) = 1. Thenc(P,1) = c(r(F1) o F{,1)
greedy operator placement algorithm (Section 3.%heree denotes concatenation of sequences.
We show that this algorithm does not always finggof. From 3),

the globally optimal solution. We then provide an

optimal operator placement algorithm (Section 3.2P.1) = c(r(F),1)+ [s(F)h
and extend this algorithm for correlated filters (Sec- Fer|P(F)<2
tion 3.3) and tree hierarchies (Section 3.4). = c(r(F),1) + [] s(F)e(F},1)
FeF:
3.1 Greedy Algorithm = c(r(F1) e F},1) O

For an in-network query pla®, let ¢(P,i) denote We then order] and the filters inF based on rank
the part of the total cost(P) that is incurred at (recall Theorem 2.1) and choose &sall the filters

that occur before®} in rank order. Note that sinceof the link, but the remainder of the tuple process-
rank(F}) = I, effectively we simply choose a8, ing cost (at nodes further up in the hierarchy) is not
all filters that have rank: I;. captured. Thus we can only get an expression for
c(P,1) in terms of the execution cost of a sequence
of filters (Lemma 3.1), but not an expression for the
entirec(P). The optimal algorithm we present relies

_ _ on obtaining an analogous expressionddP).
Proof. SupposeF; is chosen according to the theo- Assumey; < 1 for eachi (y; > 1 is handled

rem statement. By Lemma 3P, 1) = c(r(F1) ® iy Section 3.2.2). Since(F,i + 1) = ic(F, i),
Fi,1). Sinces(Fy) = 0, we can append any NuMyansmitting data on the link from nods; to Ny,
ber of filters afterF} without changing the cost of.ts down by a factor; the per-tuple cost of any
executing the sequence. Thus we can write filter applied subsequently. In terms of cost per
c(P,1) = c(r(F1) o F{ o r(F — F1),1) (4) unit time, this cost scale-down is equivalent to the

Now suppose for contradiction that there is a diffeftream rate slowing down by a factor, but the fil-

ent set of filtersF] to be executed at nod¥; and ter costs themselves remaining unchanged. Hence
a corresponding in-network query pl@ such that the link from nodeN; to N;,; can be modeled as
c(P’,1) < ¢(P,1). Similar to (4), we can write a filter F! with s(F!) = ~;. Additionally, we set

(P 1) = c(r(F}) o Fler(F - F)),1) (5) c(F},1) = Li([]j=; v;) " Intuitively, the per-tuple

Theorem 3.2. To minimize ¢(P,1), F1 =
{F | F occurs before} in r(F U {F{})} where all
ranks are calculated at nod¥’;.

cost of traversi?\g the link i$;, even after the pre-
The right sides of (4) and (5) give the execution coglous network links have been traversed. The term
of the same set of filtets U {Fll} but in different se- (H;;ll ’Yj)_l merely compensates for the scale-down
quences. By the choice df;, the sequence in (4) iSproduced by filters, ..., F!_,. We can now write
rank ordered, but that in (5) is not. By Theorem 2.1L(p) jn terms of the execution cost of a sequence of

¢(P,1) < ¢(P',1). Thus we geta contradiction.J fjjters (assume all ranks are calculatedva).

We illustrate the operation of the greedy algorithmemma 3.4. For i € {1,...,m — 1} constructFj

by an example. with s(F}) = i, c(F!,1) = L([T;Z} %)~ - Then

Example 3.3. Consider operator placement using(P) = c(r(F1)e Fier(Fy)e.. .o F,, ,or(Fm),1)
the greedy algorithm for Example 2.2. The ranks iheree denotes concatenation of sequences.
F,..., Fyat Ny are 4002 800, 2600, and 5000 ré- proof The result follows by noting that
spectively. The rank of} isl; = 700. ThusF; is c(r(F),i) = H;‘;ll v - e(r(F;),1) and per-
chosen agfi}. The ranks ofts, ..., Fy at N2 are foming suitable manipulation @{?) (given by (3))

obtained by scaling down the ranks &% by 71, SO 45 in Lemma 3.1. The detailed proof is omitted]

they are160, 520, and 1000. Only rankFs) < Ia,

thusF, = {F,}. Continuing in this fashion, we ob- Suppose for now that the ranks of the sequence

tain 73 = {F3} and 7, = {F}}. For this plan, we of filters Fi,... ,an_l (modeling links) are in non-

findc¢(P) = 792.8 by (3). O decreasing order. Then we have the following result

. .. _analogous to Theorem 3.2. The proof is very similar

The greedy algorithm makes very local decisions. . .
2 to that of Theorem 3.2 and hence is omitted.

Thus it is not surprising that the greedy algorithm

does not always produce the globally optimal solbeémma 3.5. Suppose rani) < rank(F},) for

tion. For instance¢(P) = 792.8 in Example 3.3 is €achi € {1,...,m — 2}. Denote byF" the filter

greater tham(P) = 777.8 in Example 2.2. sequence?y e r(F U {F},..., F},_,}) e F},. Then

¢(P) is minimized when:
3.2 Optimal Algorithm F; = {F| F occurs betweed} , andF} in 7'} O

In the greedy algorithm of Section 3.1, network links In general the ranks of}, ..., F. _, may not be
are modeled as filters with selectivity 0. This apn non-decreasing order. To deal with such cases, we
proach enables us to capture the transmission dastoduce the concept of “short-circuiting”.

Ni—1 Nj | ' Nivg| v.. Algorithm OPTFILTER
1. while @i | v; > 1)
2. short-circuit nodeV;
3. while (true)
fori=1tom —1

s(El) = andC(Fil, 1) = ll(Hli]i ’yj)_l

j=

[
on short—circuit‘ of node N

BV |
N'_ i | 1 I N' !
[XX] 77!77]: I + I 77Jj+j1’ [X X]

4.
5.
i 6. if (3i|rank(F]_,) > rank(F}))
7.
8.

short-circuit nodeV;
else break
(A nl} l l l
3.2.1 Short-Circuiting 190 ?;”—_Fti ;orfnfu (L B }) o By

Suppose ranl#!_,) > rank F!) for somei. We 11. F;={F|F occursbetweed , andF}in 7'}

show that in the optimal in-network query plan infigyre 5: Optimal Operator Placement Algorithm
this scenario, no filter is executed at nadle

Figure 4: Short-Circuiting

Lemma 3.6. If rank(F! ;) > rank(F}) for somei €

_ _ We can continue short-circuiting on the modified
{2,...,m — 1}, then in the optimal placF; = 0.

topology until there does not exist amyfor which

Proof. Suppose ranl¢! ;) > rank(F!) and in the rank F{_;) > rank(F}). At that point, Lemma 3.5
optimal in-network query plaf®, F; # (). Consider ¢an be applied to yield the optimal solution.
the alternate query plar®® andP” where the filters
in 7; have been moved to nod€,_; andN; respec- 3.2.2 Handling Cost Scaleup
tively. We have
So far we have assumeg < 1 for eachi. If

c(P) = al(li_l + ce(r(F), 1) +a21i> + as v > 1, it is easy to see that in the optimal solu-
tion F;.1 = 0, as follows. If any filters are executed
wherea, = [[pip(r)<; S(F), a2 = [Ipjper, (F): at nodeN,,, they can be moved to nod¥;. The
andag denotes the sum of the other termsc{fP) new plan will reduce the computational cost (since
from (3). Similarly: c(F,i) < c(F,i+ 1)) as well as the transmission
" cost (since more filters are applied earlier reducing
«P) = w (C(T‘(]:")’Zm—ll az(lion+ li)) 9 the amount of data transmitted). Thus, just as in Sec-
(P = a (li—l 1+ vee(r(F), i)) T as tion 3.2.1, ify; > 1, we can short-circuit nod&;_ |
(if vm—1 > 1 we can simply delete nod¥’,,). We
SinceP is optimal, we must havgP) < ¢(P’) and can continue short-circuiting untj; < 1 for eachi.
¢(P) < ¢(P"). Substituting forc(P), ¢(P’), and
¢(P") and simplifying, we get: 3.2.3 Summary and Example
ll’”%” <3 L (6) A summary of the entire algorithm is given in Fig-
— it T ure 5. Its running time i€((m + n)log(m + n))
(6) implies that rankF' ;) < rank(F!) which is a due to the sorting of filters in rank order in line 9.
contradiction. O

Example 3.7. Continue with Example 2.2. We first
If F; is guaranteed to be empty in the optim&enstruct a filter for each network link (line 5):

query plan, we can modify the network topology i 1 9 3
by “short-circuiting” nodeN; as shown in Figure 4. C(Fil7 1) | 700 | 2500 | 3000
Logically, nodeN; is removedN;_; is connected to s(F?) /5| 1/2 | 1/4
nodeN;; by alink having cost;_; +1;, and the cost rank(ZFj) 875 1 5000 | 4000

scale-down factor from nod®;_; to N, is set to
~i—17i- At each short-circuit the number of nodes We find that rankF}) > rank(F}). Thus, we can
decreases hy 1. short-circuit N3 (line 7). On short-circuiting, we

Ny | N, Ny Algorithm CORRELATED

,,,,, F F ___& F I X .
r°2 3 F4 F. Setof correlated filters to be ordered
700 800 | 1.0-0
Figure 6: Optimal Plan for Example 2.2 (after short2. while (Q # F)
circuiting Ns) 3. conditional rankF') = % VFeF

))) o 4. F,;, = F € F that has smallest conditional rank
obtain a new link with transmission co800 and 5 chooser,, ., to be executed next2 = Q U {Frint

scale-down factorl /8 (Figure 6). The filter cor-
responding to this link (denote it bly“zlA) has cost
4000, selectivityl /8 and hence rank571.4. Since

rank(FY) < rank(F; ;), N0 more ShOIt-CIrcuiting is |5¢eq filters that can be found efficiently, we assume
required. The ranks of7, ..., Fy are 400, 800, natin any in-network query plan, the set of filters at
2600, anld 5000'1 Thus the rank order of filters is; o e are executed in the order given by Figure 7.
By, Fy, Yy, By, By 4, By (line 9)'_ J1 = {Fl’F2}’ We again model the network links as filters with
F2 = {F3}, and 7y = {Fy} (line 11). SinceNs oqqt and selectivity as before (given by Lemma 3.4).
has been short-circuitedf; = 0. For this plan, aqgitionally, the filters that model network links are

C(P) = 7478, that is lower than the costs in EX‘Independean all filtel’S, i.e., for eaCh, S(FZI|Q) —

amples 2.2 and 3.3, and can be verified to be opgl(—F;) for any Q such thatF! ¢ Q. Assume as in

mal. Section 3.2 that all ranks are calculated at ndde
First we show that even in the presence of correlated

3.3 Correlated Filters filters, short-circuiting (Section 3.2.1) is still valid.

Figure 7: Ordering of Correlated Filters [9, 17]

We now consider operator placement when the filtdremma 3.8. Let filters in 7 be correlated. |If
in 7 may be correlated, i.e., the selectivity of a fiFank(F} ;) > rank(F}) for somei € {2,...,m —
ter on a stream may depend on the filters that hale then in the optimal solutiofF; = .

already been applied. We define ttenditional se- Proof. SupposeF, # (. Replace the filters in

lectivity of a filter I given a set of filtersQ C 7, F; by a single filter ' having equivalent per-tuple

den.oteds(F|Q), as the fraction (_Jf tup!es that satisfy, ;" ang selectivity as the filter sequence at node
F given that they satisfy all the filters i@. Note that N;. Now consider rank”), which may depend on

if e Q,_S(FIQ) =1 the filters executed at node$;,..., N;,_;. Since

When filters are correlated, Theorem 2.1 no Iongl%{nKF;) > rank(F), either rankF) > rank(F?)

holds. In fact, the problem of optimal ordering O{in thial] case mO\Z/eE’? to Nyy1) or rankF) ’<

correlated filters at a single node has been ShOW'}é?Mpl) (in which case mc;\J/reF to N;_,). Note
i—1 i—1)-

be NP-hard [9, 17]. The same work also gives a Ngfiay this movement of does not change the rank of
ural greedy algorithm based on conditional selectlghy filter since the ranks df’_, andF! are indepen-
ity (Figure 7) that is guaranteed to find an ordering, - J¢ -1 filters and the r -y ;

.)) ank df depends only on
having a cost at most times the optimal cost. Thet

:) > . the filters executed at nod@§, . .., V;_; which re-
algorithm defines the conditional rank for each filter .. 1o same. Now using a similar argument as in

(lne 3) and at each step, picks the filter having trEﬁe proof of Lemma 3.6, we see that this movement

slmaller;st conﬂltlor;lgl rank to_be gxecutgd niextr.] Itb? F cannot increase the total cost of the solution.
also shown that this approximation ratio 4fs the ThusZ; = 0 in the optimal solution. 0

best possible unledd = N P.

Our problem of optimally executing a set of corréeFheorem 3.9. Let filters in F be correlated. Let
lated filters at multiple nodes is clearly at least as diff ') denote the ordering of a set of filtefg' as
ficult as the single-node problem, and hence is N&btained by algorithm CORRELATED (Figure 7).
hard. We show in this section that the same appra#f4th this new interpretation of-(F’), algorithm
imation ratio of4 can be obtained for our problemOPT_FILTER (Figure 5) gives a 4-approximation to
setting. Since Figure 7 is the best ordering for corrire optimal operator placement.

Proof. With the new interpretation of(F") itis easy whereW; and W, represent the lengths of the win-
to see that Lemma 3.4 holds in the presence of cdows (time-based or tuple-based) on stre&nand

related filters. After short-circuiting, the ranks oby, and 7 = {Fi,..., F,} is a set of filters. We
the filters F' ..., F! _, are non-decreasing. Hencextend the cost model of Section 2.1 to include the

when the filters are ordered (by algorittdORRE- selectivity and cost of the join operator.
LATED) in line 9. of algorlthmOPT_EILTER the f'!' 1. Selectivity. The selectivitys(X) of the join is
ters corresponding to the network links automatically defined as the fraction of the cross product that
occur in the desired order, and no ordering restric- oceurs in the ioin result. Thus if stregrﬁ§ and
tions on the filters need to be imposed. Since algo- S, have ratesj of and7:2 wples per unit time
r_|thm CORREITATEDS a 4-approximation to the op- coming into the join operator, the output of the
timal ordering in the case when there are no ordering . . .

join is at rates(MX)ry 7.

restrictions [17], the result follows. O

2. Cost The cost per unit time of performing the
3.4 Extension to Tree Hierarchies join is given by
So far we have restricted our attention to the data cos(X) = ajry + agry +azrire (8)

acquired by only one of the leaf nodes or sensors
of Figure 1. LetS; denote the stream of data from whereq;, a2, andas are constants. This form

theith sensor. We have shown how to optimize the arises because a constant amount of work must

query (1) over any single streaff;. In reality, query be done per input tuple (therefater, + asrs),
(1) may be posed over data gathered by any number and similarly a constant amount of work to out-
of sensors, i.e., the query és=(S1 U ... U Sy) for put every join tuple (thereforesrir). Just as

k sensors. This query can be written as the union the filter costs, the join cost also scales down by

oF(S1) U ... Uor(Sy). Each of the queries in 3 factory; on moving from nodeV; to N;1.
this union operates on different data, so there is no

opportunity for sharing computation or transmissidaiven cost and selectivity for the join operator, an
among these queries. Hence optimizing their co@xpression analogous to (3) for the total cost of an
bined execution is equivalent to optimizing each #i-network query plan for query (7) can be written.
them separately, for which we use the algorithm of Divide the set of filtersF into F*, 72, and F"2.

Section 3.2. Fori = 1,2, F* consists of those filters that may be
applied either orb; before the join or on the join re-
4 Joins sult after the join (denot&| by n;). F'2 can be

. applied only on the join result. We assume that the
Recall the network topology of Figure 2. Now SUBoin and the filters are independent, i.e., the selectiv-
pose the data acquired by sensor nddeis in the i, ot any operator does not depend on the operators
form of & dlffe_rent data streams (_e.g., a tempergbp"ed earlier. We have the following result (similar
ture S”e?m' a "_ght stream, ?V'bf_a“on stream, andtﬁol'heorem 5.4 in [3]). We omit the proof since it is
on). In this section, we consider in-network procesr'i‘,]-os,[Iy an adaptation of the proof in [3] to incorpo-

ing for queries that involve a sliding-window join [Z]rate network links and cost changes between nodes.
of these streams. We assume that the join of:all

streams is performed at a single node by Mh#oin Theorem 4.1. Given join cost of the forr(8), in the
operator [14]; consideration of join trees is left agptimal in-network query plan fof7), the filters in

future work. For ease of presentation, we assuiy® (or F2) must be executed in rank order. [
k = 2; extension to generdl is straightforward.

Let S; and S, be the streams acquired by sensorLet Fi,..., F, be the filters inF" in rank order.
nodeN;. We consider the query: By Theorem 4.1, in the optimal plan there existsian
such that firs#!, . . ., Fi1 are executed on streaff,
SELECT * FROM (Sy[W1] X Sa[Wa]) followed by the join, and thet, ,, ..., . on the

WHERE F; A ... AFy (7) join result (similarly forF2). Additionally, the join

heavily or up to capacity. Load balancing may be

Algorithm OPT_FILTER _JOIN particularly applicable when the system is required
1P - NULL, C(P) = to support a number of concurrent queries.
2. fori=0tony,j=0tons, k=1tom
3. Construct new V\{lthlom ?t nodeN, Definition 5.3 (Load-Balancing). Given cost con-
g' 8pt!ma”y p:acig . 7?‘2 a: nogegl, e %’C straintC; at nodeN;, find the in-network query plan

: pumaty placery, ..., 7y aiNOdesVu, ..., Nk p that minimizesnaxi<;<m{c(P,i)/C;}. O
6. Optimally place remaining filters &, ..., N,, ==
7. if (c(P) <c(PY)) P* =P Clearly, the load balancing problem is at least
8. returnP*

as hard as the feasible operator placement problem,
Figure 8: Operator Placement for Queries with Joisice ifmax{c(P,i)/C;} < 1 we have found a fea-
sible operator placement. Thus, the load balancing

problem is NP-hard.
can be executed at each of thenodes. Our algo-

rithm (Figure 8) finds the optimal plan by an exhau$.2 Per-Filter Cost Scaling

tive search through these options. Lines 4-6 are e@@ far we have assumed that the cost of each fil-

an in_/ocat_ion of aIgor_ithnOPT_FIITTER Hence the (or scales down by a factoy; from node N; to

algorithm is polynomial, and a simple implementay, . However, the cost of different filters may

tion runs inO(n1ngm(n + m)log(n +m)) time. change differently from one node to the next, i.e.,
) c(F,i+ 1)/c(F,7) may be different for different".

5 Extensions For example, if a filtetF” accesses external data that

In this section, we define some interesting variatioﬁess'des close to nod;, it may be more expensive to

of the basic filter placement problem as future worRXSCUte” atnodeN, than atnodev;. Meanwhile,
and we demonstrate their hardness. other filters may be cheaper at nag, ; simply be-
causeN; 1 has higher computational power. When

51 Constrained Nodes we have per-fllter cost _scallng, the technique we used
_ _ of modeling network links as filters no longer ap-
In some scenarios we may have constraints on fiss. Whether the problem becomes NP-hard with

total amount of filter execution and transmission Coskyfilter cost scaling remains an open question.
that certain nodes can incur. Given cost constraints

at each node, a new problem is to find a feasible '8 Related Work
network query plan that satisfies these constraints, if
such a plan exists. Recall the definition @fP,i) A considerable amount of work has focused on ex-
from Section 3.1. tending centralized data stream query processing
systems [2] to a distributed setting, e.g., Borealis [1],
Definition 5.1 (Feasible Operator Placement). HourGlass [18], IrisNet [7], and NiagaraCQ [4].
Given cost constrainC; at node NV;, find an in- \ost of this work considers internet-style network
network query plar® such thatc(P, i) < C; for gpologies consisting of nodes with ample computa-
eachi or return NOis no suchP exists. U tional power. Consequently, the work focuses on op-
Theorem 5.2. The feasible operator pIacemenTtimiZing network usage and min_imizing latency, and
) IS not concerned with computational overload. Even
problem is NP-hard.
when computational overload is considered, e.g, in
Proof. By reduction fromPARTITION[11]. 7 [5], only heuristics are provided to move load from
one node to another.

In cost-constrained environments, a further desir-Our paper addresses the considerably different
able property might be load balancing: We miglscenario of data acquisition environments [10],
prefer a plan having overall higher cost if it placeshere optimization of both communication and com-
roughly equal load on each node, as compared tpwation is required. There has been some previ-
plan that has lower cost but loads a few nodes verys work on in-network processing in these environ-

ments, but it focusses primarily on aggregation [15]4] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:
and has not considered expensive filters or joins. Ac-
quisitional query processing [16] focusses on where,
when, and how often data is physically acquired and

delivered to the query operators, but the problem

operator placement is not dealt with.
In classical relational query optimization, filters[G]

are usually assumed to be inexpensive, and a com-

mon optimization heuristic is to push filters as close
to the leaf operators as possible. Query optimiza-
tion and site selection for distributed databases ¢l
also well studied [8, 12], again assuming inexpen-
sive filters. Expensive filters have been considered in

the context of query optimization with user-definedg

predicates [3, 13], but only in a centralized setting.

v

This paper addresses the problem of query process-

Conclusions o

ing in sensor data environments with progressiveio]
increasing computational power and network band-
width up a hierarchy of processing nodes. Data is ac-

quired at low-capability edge devices and transmittf
up the hierarchy to the root, where queries are po

d
ed

and results collected. To reduce bandwidth, query
operators can be executed lower in the hierarchy, typy
ically at the expense of higher computational cost.
We address the problem of balancing computational
cost against network bandwidth to obtain an optimiab]
operator placement algorithm that minimizes overall
cost. We show that the problem is tractable, but that a
greedy algorithm can be suboptimal. We providej&]
optimal algorithm for uncorrelated filters, then ex-
tend our approach to correlated filters and multiwvay
stream joins. Finally, we pose related open problems;
for future research.

References

(16]

[1] Y. Ahmad and U. Cetintemel. Network-aware query pro-

(2]

(3]

cessing for stream-based applicationsPtac. of the 2004
Intl. Conf. on Very Large Data Basepages 456-467,
Sept. 2004. [17]

B. Babcock, S. Babu, M. Datar, R. Motwani, and

J. Widom. Models and issues in data stream systems. In
Proc. of the 2002 ACM Symp. on Principles of Databas[‘fg]
Systemgspages 1-16, June 2002.

S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicateACM Trans. on Database Systems
24(2):177-228, 1999.

A scalable continuous query system for internet databases.
In Proc. of the 2000 ACM SIGMOD Intl. Conf. on Man-
agement of Datgpages 379-390, May 2000.

] M. Cherniack et al. Scalable distributed stream processing.

In Proc. First Biennial Conf. on Innovative Data Systems
Research (CIDR)Jan. 2003.

C. Cranor et al. Gigascope: high performance network
monitoring with an SQL interface. IRroc. of the 2002
ACM SIGMOD Intl. Conf. on Management of Datzage
623, May 2002.

A. Deshpande, S. Nath, P. Gibbons, and S. Seshan. Cache-
and-query for wide area sensor database®rtrc. of the
2003 ACM SIGMOD Intl. Conf. on Management of Data
pages 503-514, 2003.

] R. Epstein, M. Stonebraker, and E. Wong. Distributed

query processing in a relational data base systerRrdno.
of the 1978 ACM SIGMOD Intl. Conf. on Management of
Data, pages 169-180, May 1978.

U. Feige, L. Lowasz, and P. Tetali. Approximating min-
sum set coverAlgorithmicg 2004.

M. Franklin et al. Design Considerations for High Fan-in
Systems: The HiFi Approach. IRroc. Second Biennial
Conf. on Innovative Data Systems Research (C|DRi).
2005. (To appear).

M. Garey and D. Johnsoomputers and Intractability: A
Guide to the Theory of NP-Completene®é H. Freeman
& Co., 1979.

L. Haas et al. R*: A Research Project on Distributed Rela-
tional DBMS. IEEE Data Engineering Bulletinb(4):28—
32, 1982.

J. Hellerstein and M. Stonebraker. Predicate migration:
Optimizing queries with expensive predicates. Aroc.

of the 1993 ACM SIGMOD Intl. Conf. on Management of
Data, pages 267-276, 1993.

J. Kang, J. F. Naughton, and S. Viglas. Evaluating window
joins over unbounded streams. Pmoc. of the 2003 Intl.
Conf. on Data EngineeringVar. 2003.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TAG: A tiny aggregation service for ad-hoc sensor net-
works. InProceedings of the 5th USENIX Symposium on
OSD|, Dec. 2002.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor net-
works. InProc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Datgpages 491-502, 2003.

K. Munagala, S. Babu, R. Motwani, and J. Widom. The
pipelined set cover problemProc. Intl. Conf. Database
Theory 2005. (To appear).

P. Pietzuch et al. Path optimization in stream-based overlay
networks. Technical report, Harvard University, 2004.

