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Hierarchically classifying documents using
very few words

Abstract. The proliferation of topic hierarchies for text documents has re-

sulted in a need for tools that automatically classify new documents within such

hierarchies. One can use existing classi�ers by ignoring the hierarchical structure,

treating the topics as separate classes. Unfortunately, in the context of text cat-

egorization, we are faced with a large number of classes and a huge number of

relevant features needed to distinguish between them. Consequently, we are re-

stricted to using only very simple classi�ers, both because of computational cost

and the tendency of complex models to over�t.

We propose an approach that utilizes the hierarchical topic structure to decompose

the classi�cation task into a set of simpler problems, one at each node in the

classi�cation tree. As we show, each of these smaller problems can be solved

accurately by focusing only on a very small set of features, those relevant to the

task at hand. This set of relevant features varies widely throughout the hierarchy,

so that, while the overall relevant feature set may be large, each classi�er only

examines a small subset. The use of reduced feature sets allows us to utilize

more complex (probabilistic) models, without encountering the computational

and robustness di�culties described above.

1 Introduction

Over the past decade, we have witnessed an explosion in the availability of
online information, with millions of documents on every topic easily accessible
via the Internet. As the available information increases, the inability of people
to assimilate and pro�tably utilize such large amounts of information becomes
more and more apparent. The most successful paradigm for organizing this
mass of information, making it comprehensible to people, is by categorizing
the di�erent documents according to their topic, where topics are organized
in a hierarchy of increasing speci�city.

Hierarchical classi�cation hierarchies of this type have long been used in
special-purpose collections of documents such as MEDLINE [HBLH94] or col-
lections of patent documents [Sel96]. More recently, they have been used in
several internet search engines, such as Yahoo [Yah95] or Infoseek [Inf95], to
categorize the entire contents of the World Wide Web.
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The bottleneck in these classi�cation tasks is the need for a person to
read each document and decide on its appropriate place in the hierarchy.
Clearly, we would like to avoid this bottleneck by automatically classifying
new documents.1 In many ways, this task is ideally suited to the applica-
tion of machine learning techniques. We have a speci�ed set of classes, i.e.,
the topics in the hierarchy, and a very large training set, consisting of all of
the documents that have already been classi�ed. However, with few excep-
tions (notably [AAK96] which focused on hierarchically structured attributes
rather than classes), most work in classi�cation has ignored the problem of su-
pervised in the presence of hierarchically structured classes. (There has been
some work on unsupervised hierarchical clustering, e.g., [Fis87].)

Of course, standard classi�cation techniques can be applied to this problem
almost directly. We simply construct a \
attened" class space, with one class
for every leaf in the tree. We use the presence or absence of di�erent words
as our features. We can now train a single classi�er so that each document is
classi�ed, based on the words that it does and does not contain, as belonging
to precisely one of the possible basic classes.

Unfortunately, this simplistic approach breaks down in the context of text
classi�cation. Here, the resulting classi�cation problem is huge: for a large
corpus, we may have hundreds of classes, and thousands of features. The com-
putational cost of training a classi�er for a problem of this size is prohibitive.
Furthermore, the variance of the resulting classi�er is typically very large,
since such a large model will have many thousand parameters which need to
be estimated, and thus can easily lead to over�tting of the training data.

Previous work [SHP95], has shown that feature selection can be a useful
tool in dealing with this issue. We eliminate many of the words that appear
in the corpus as being unindicative of the topic. The results of [KS96] show
that one can obtain a signi�cant increase in accuracy by reducing the number
of words used for classi�cation from 1600 to as few as 100. However, even
for 100 features, the computational cost and the robustness still pose signif-
icant limitations, forcing us to use only very simple classi�ers such as Naive
Bayes [Goo65].

The 
attened classi�er loses the intuition that topics that are close to each
other in the hierarchy have a lot more in common with each other, in general,
than topics that are very far apart. Therefore, even when it is di�cult to �nd

1Indeed, Infoseek has recently attempted to overcome this di�culty by using neural

network technology to automatically categorize webpages [Inf96].
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the precise topic of a document, it may be easy to decide whether it is about
\agriculture" or about \computers".

Our approach, therefore, is to divide the classi�cation task into a set of
smaller classi�cation tasks, each of which corresponds to some split in the
classi�cation hierarchy. Thus, for example, we may have one classi�er, which
distinguishes articles about agriculture from articles about computers, and
another one, only applied to documents about agriculture, which distinguishes
animal husbandry from crop farming.

The key insight is that each of these subtasks is signi�cantly simpler than
the original task, since the classi�er at a node in the hierarchy need only distin-
guish between a small number of categories. Therefore, it is possible to make
this determination based only on a small set of features. For example, there
appears to be a fairly small number of words|e.g., computer, farm, plant, soft-
ware, . . .|whose presence or absence in the document clearly di�erentiates
documents about agriculture from documents about computers.

The ability to restrict to a very small feature set avoids many of the dif-
�culties we describe above. The resulting models are more robust, and less
subject to over�tting. Thus, they achieve better accuracy even for very simple
classi�ers such as Naive Bayes. The use of smaller models also allows us to
go beyond the simple classi�ers, and search for a more complex classi�er that
more realistically models the data. For example, we can train a probabilistic
classi�er (such as TAN [FG96] or KDB [Sah96]) that takes into account the
correlation between di�erent features (e.g., the fact that Microsoft and Win-
dows tend to co-occur). As we will see in our experimental results, the use
of more expressive models allows us to obtain better accuracy. In contrast,
we show that it is typically infeasible to learn such models in the presence of
many features, and that, even when feasible, the over�tting problem results in
reduced accuracy.

It is important to note that the key here is not merely the use of feature
selection, but its integration with the hierarchical structure. We do not get
the same performance if we simply choose a small feature set and use it for
classi�cation in the 
attened class space. To understand this, observe that
the set of features required for these subtasks varies widely from one to the
other. For example, almost none of the words that helped us di�erentiate be-
tween agriculture and computers are useful for distinguishing between animal
husbandry and crop farming: a word such as \farm" is unlikely to be help-
ful because it is fairly likely to appear in documents of both types, whereas
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a word such as \computer" is not helpful because it is likely to appear in
virtually no documents that reach this classi�er. Thus, while each classi�er
uses only a very small set of features, the overall set of features used in the
classi�cation process is still rather large. A 
attened classi�er would have to
consider all of these features in order to do a reasonable job of classifying all
of the documents. For any given document, however, most of these features
are irrelevant, and serve only to confuse the classi�er. In the hierarchical ap-
proach, any document only \sees" a small fraction of the features throughout
the process (e.g., a document about computers will probably never meet a
classi�er utilizing the word \cow"). And even the features which it does see
are divided so as to focus the attention of the classi�er on the features relevant
to the classi�cation subtask at hand.

We note that, while our techniques are designed for dealing with the huge
classi�cation tasks arising in the context of text classi�cation, they may also be
useful in other domains. For example, in medical applications, we often want
to classify the disease that a patient has based on symptoms and test results.
Here also, our classes|the diseases|are often organized in a taxonomic hier-
archy, where only a small number of features is needed to distinguish between
neighboring classes.

The rest of this paper is structured as follows. In Section 2 we discuss the
speci�c techniques we use for feature selection and for classi�cation. We focus
on probabilistic techniques, as they provide a coherent underlying framework
both for feature selection and for construction of classi�ers of various com-
plexities. We emphasize, however, that our basic paradigm in no way depends
on the use of these particular techniques. In Section 3 and Section 4, we,
respectively, provide our experimental methodology and a variety of results
supporting our approach. We show that our technique allows us to restrict
the set of features signi�cantly (from 1280 to 10), and that the resulting clas-
si�er, in addition to being smaller and easier to train, also provides much
better accuracy than the 
at classi�er. We conclude in Section 5 with some
discussion and directions for future work.

2 Probabilistic Framework

Our general approach, as described in the introduction, consists of constructing
a hierarchical set of classi�ers, each based on its own set of relevant features.
It uses two main subroutines: a feature selection algorithm for deciding on
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the appropriate feature set at each decision point, and a supervised learning
algorithm for constructing a classi�er for that decision. The general approach
can be instantiated in a variety of ways, depending on the choice of these
subroutines.

In this paper, we have chosen to focus on probabilistic methods for feature
selection and for classi�cation. The probabilistic framework provides both
e�cient and principled techniques for pruning large feature sets [KS96] and a
range of classi�ers of varying complexities and accuracies [Paz95, FG96, Sah96,
SP96]. We now provide a brief overview of the probabilistic framework and
its application to classi�cation and feature selection.

2.1 Bayesian Classi�ers

At the heart of the probabilistic framework is the idea that our model of the
world is represented as a probability distribution over the space of possible
states of the world. Typically, a state of the world is described via some set of
random variables, so that each such state is an assignment of values to these
variables.

A Bayesian network [Pea88] allows us to provide compact descriptions of
complex distributions over a large number of random variables. It uses a di-
rected acyclic graph to encode conditional independence assumptions about
the domain; these independence assumptions allow the distribution to be de-
scribed as a product of small local interaction models. Each variable (feature),
Xi, is represented as a node in the network. An arc between two nodes denotes
the existence of a direct probabilistic dependency between the two variables.
Essentially, the structure of the network denotes the assumption that each
node Xi in the network is conditionally independent of its nondescendants
given its parents �(Xi). To describe a probability distribution satisfying these
assumptions, we associate with each node Xi in the network a conditional

probability table, which speci�es the distribution over Xi given any possible
assignment of values to its parents �(Xi). If Xi has no parents, it simply con-
tains a prior probability distribution over Xi's values. The network structure
and the associated parameters uniquely de�ne a probability distribution over
the variables in the network.

A Bayesian classi�er is simply a Bayesian network applied to a classi�cation
domain. It contains a node C for the (unobservable) class variable and a node
Xi for each of the features. Given a speci�c instance x (an assignment of
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Figure 1: Bayesian networks corresponding to (a) a Naive Bayesian classi�er;
(b) A more complex Bayesian classi�er allowing limited dependencies between
the features.

values x1; x2; :::; xn to the feature variables), the Bayesian network allows us
to compute the probability P (C = ck j X = x) for each possible class ck.
Bayes Optimal classi�cation can be achieved by simply selecting the class ck
for which this probability is maximized.

While it is possible to use any Bayesian network over these variables as
a Bayesian classi�er (as in [SP96], empirical evidence [FG96] suggests that
networks where the feature variables are all directly connected to the class
variable are better at the classi�cation task. The simplest and earliest such
classi�er is the Naive Bayesian classi�er [Goo65]. This classi�er, which signi�-
cantly predates the development of Bayesian networks, is still widely employed
today. The Naive Bayesian classi�er makes the simplifying, but very restric-
tive, assumption that domain features are conditionally independent of one
another, given the class variable. In other words: P (XjC) =

Q
i P (XijC): This

assumption corresponds to the Bayesian network structure of Figure 1(a).
The assumption that all features are conditionally independent given the

class variable is clearly unrealistic in the text domain (as mentioned in the
introduction) as well as in others. Several approaches have been proposed for
augmenting the Naive Bayesian classi�er with limited interactions between the
feature variables, i.e., where we allow each node to have some parents beyond
the class variable (as illustrated in Figure 1(b)). Unfortunately, the problem
of inducing an optimal Bayesian classi�er is NP-hard even if we restrict each
node to have at most two additional parents [Chi95]. Thus, any algorithm for
constructing such a classi�er would be exponential in the number of features
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in the worst case.
Two main solutions have been proposed to this problem: The TAN algo-

rithm of [FG96] restricts each node to have at most one additional parent, in
which case an optimal classi�er can be found in quadratic time (in the number
of features). The KDB algorithm of [Sah96], on the other hand, compromises
by heuristically searching for a good, but potentially suboptimal, structure.
It can be used for �nding classi�ers where each node has at most k parents
for arbitrary values of k. Essentially, it chooses as the parents of a node Xi

the k other features that Xi is most dependent on, using a metric of class
conditional mutual information, I(Xi;Xj jC) [CT91].

The structure selection phase is done in a greedy fashion, requiring time
which is linear in k and quadratic in the total number of features. (Of course,
the size of the conditional probability table for a node with k parents is expo-
nential in k, and requires a corresponding amount of time for the parameter
estimation phase.)

Since part of our goal in this paper was to experiment with classi�ers of
varying complexity, we chose to use KDB as the basis for our experiments.

2.2 Feature Selection

Recall that in our text domains, we have a feature for every word that appears
in any document in the corpus. Even if we use algorithms such as KDB or TAN,
which are \merely" quadratic (as opposed to exponential) in the total number
of features, the cost can still be prohibitive. Moreover, if we wish to employ
more optimal models which are of exponential complexity in the size of the
feature set, then feature selection is an absolute must. Thus, for text domains,
the number of features can still be a bottleneck and feature selection becomes
imperative, even if we did not consider the improved classi�cation bene�ts of
hierarchically-applied feature selection, as outlined in the introduction.

In addressing this issue, we continue in the probabilistic framework, apply-
ing the feature selection method of [KS96]. This method for feature selection
employs Information Theoretic measures [CT91] to determine a subset of the
original domain features that seem to best capture the class distibution in the
data. Formally, the cross-entropy metric between two distributions � and �,
de�ned as D(�; �) =

P
x2
 �(x) log

�(x)

�(x)
, provides us with a formal notion of

the \distance" between � and �. For each featureXi, the algorithm determines
the expected cross-entropy �i = P (Xi)D(P (CjX); P (CjX

�i)) where X�i is the
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set of all domain features except Xi. It then eliminates the features Xi for
which �i is minimized. Thus, the feature eliminated least disrupts the original
conditional class distribution. This process can be iterated to eliminate as
many features as desired. To compute P (CjX) the feature selection algorithm
simply uses the Naive bayes model for speed and simplicity. Moreover, since
this model assumes conditional independence of features, it is a fast process to
update P (CjX) to P (CjX

�i) after the elimination of Xi. In this respect, the
algorithm is very applicable to text domains with many features. Koller & Sa-
hami have demonstrated this in experiments with text, and thus their method
was selected for use here. Note that Koller & Sahami's method also provides a
mechanism for eliminating features whose predictive information with respect
to the class is subsumed by other features, but since this extension requires
quadratic time with respect to the number of features, it was not employed
here.

3 Experimental Methodology

In order to test our scheme for hierarchical classi�cation, we �rst needed to
obtain hierarchically classi�ed text data. To this end, we made use of the
Reuters-22173 dataset2 and applied our own processing methods to construct
two hierarchically classi�ed document collections.3

The Reuters collection does not have a pre-determined hierarchical classi-
�cation scheme, but each document can have multiple labels, so we identi�ed
labels which tended to subsume other labels. Two subsets of the Reuters
collection, which we call Hier1 and Hier2, were then extracted, in which ev-
ery document contained one (and only one) major topic and minor topic (or
subtopic). The major topics were then all grouped together at the top level of
the hierarchy. Since the entire Reuters collection deals with business related
articles it would be fair to assume that the top level of each hierarchy could
be labelled as \Current Business". The major and minor topics in the two
datasets are described in Tables 1 and 2.

Next, each of these datasets was split 70%/30% into class strati�ed training

2This collection can be obtained by anonymous ftp from /pub/reuters1 on ciir-

ftp.cs.umass.edu. Arrangements for access were made by David Lewis.
3Ultimately, we hope to try out our approach on text from commercial Web directory

hierarchies. We are currently negotiating with several such companies for research access to

their data.
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Dataset size
Major topics minor topics training testing
Grain Corn 115 50

Wheat 156 67
Money E�ects Dollar 138 60

Interest Rates 136 59
Crude Oil Natural Gas 56 25

Shipping 53 24

Total 654 285

Table 1: Description of the Hier1 dataset.

Dataset size
Major topics Minor topics training testing
Acquisitions C-bonds 13 6

Earnings 11 6
Veg-Oil Bus. Oilseed 21 9

Palm Oil 25 12

Total 70 33

Table 2: Description of the Hier2 dataset.

and testing sets (as described in the �gure). At this point, all document
processing is done on the training set only so as not to create overly optimistic
experimental results from having had any prior access to the testing data. We
then apply a single pass of a Zipf's Law -based feature selection method, which
eliminates all words which appear fewer than 10 or more than 1000 times in the
training corpus. This is done so that we do not get unrealistic improvements
in accuracy by simply eliminating features that are not even likely to appear
in the test collection, or are so frequent that they will have no bearing on
classi�cation. Finally, each document is represented as a boolean vector, in
which each feature denotes the presence or absence of a word that appeared in
the training corpus and survived the initial Zipf's Law-based feature selection.
These datasets were then used in our experiments, as detailed below.
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In our experimental work, we seek to show that the hierarchical approach
compares favorably with the simple approach of constructing a single large
classi�er over a 
attened topic space. In both cases, the feature selection
phase plays a crucial role in the performance of the resulting classi�er.

The hierarchical classi�cation scheme begins by applying probabilistic fea-
ture selection to the entire training dataset, using, at �rst, just the major
topics associated with each document as classes. The resulting reduced fea-
ture set is then used to build a probabilistic classi�er for the �rst tier of the
hierarchy. We currently employ Naive Bayes and KDB with k = 1 and 2 as our
classi�cation methods. Then, for the training documents in each major topic,
the minor topics are used as class labels. For each major topic, a separate
round of probabilistic feature selection is employed. Note that this feature se-
lection is done starting from the original feature set (pruned only with Zipf's
law), since, as we have observed, the most indicative features at one level of
the hierarchy are unlikely to be particularly useful at lower levels. Finally, we
construct a separate classi�er for each major topic on the appropriate reduced
feature set. Note that, since every node in the hierarchy has only a subset of
the total class labels, and the nodes at the second tier of the hierarchy have
fewer instances each, the additional cost of feature selection and induction is
not substantially more than that of the 
at classi�cation scheme.

Test documents are then classi�ed in this hierarchy by �ltering them through
the �rst level classi�er and then sending the document down to the chosen sec-
ond level where a �nal class assignment (into a minor topic) is made. Note
that errors made at the �rst level of the hierarchy are unrecoverable at the
second level. Thus, our method needs to make two correct classi�cations in
order for a test document to be considered properly classi�ed. We hope to ad-
dress the issue of recovering from early errors in future work, but that would
only serve to improve our results.

In the 
at classi�cation scheme, we simply treat every minor topic as a
separate class. We then apply probabilisitic feature selection and induce one
probabilistic model based on this reduced feature set.

4 Results

As an accuracy baseline, we ran the both the hierarchical and 
at classi�cation
schemes on the datasets without employing any probabilistic feature selection.
These results, as well as the original number of features in each dataset are
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Hierarchical Flat
Dataset # Features NB KDB-1 KDB-2 NB KDB-1 KDB-2

Hier1 1258 81.8% 81.4% 85.6% 83.2% 81.4% 83.5%
Hier2 283 78.8% 66.7% 66.7% 81.8% 57.6% 66.7%

Table 3: Baseline accuracy results for hierarchical and 
at learning, employing
only Zipf's law for feature selection.

given in Table 3. Here we observe two important phenomena. First, in the
Hier1 dataset, the very large number of features used precludes the hierarchical
scheme from performing better than the simple 
at method. More importantly,
in the Hier2 dataset, the large number of features and the small dataset size
allows for the more expressive KDB algorithm to over�t the training data.
These initial results provide an empirical motivation for the integration of
feature selection.

Since it is our belief that a very small set of features su�ces for accurately
distinguishing between topics (and furthermore helps avoid over�tting), we
employed a very aggressive feature selection policy. We reduced the feature
set to 20 and then to 10 features. Recall, however, that, in the hierarchical
case, a potentially very di�erent set of 10 or 20 features is selected at each
node in the hierachy. Therefore, the hierarchical method, as a whole, actually
examines a much larger set of features. To compensate for this, we also tested
the 
at method on a feature set consisting of the 50 most relevant features.
These results are given in Table 4.

Of initial interest is the substantial improvement in accuracy over the base-
lines results which did not include feature selection. In every run using feature
selection, an improvement in accuracy was found, even though as many as 1248
features were eliminated for the Hier1 dataset! While this is an important re-
sult in itself, we are more interested in the di�erence between the hierarchical
and 
at classi�cation methods.

Our results show that the hierarchical method clearly outperforms the 
at
classi�cation method, when considering a direct comparison of the 10 and 20
feature runs. In 11 of the 12 runs, the hierarchical method produces a bet-
ter classi�cation accuracy than the corresponding 
at method. Moreover, if
reduction in relative error is compared, we �nd that the hierarchic method pro-
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Hierarchical Flat
Dataset # Features NB KDB-1 KDB-2 NB KDB-1 KDB-2

Hier1 10 92.6% 94.0% 93.3% 90.9% 89.8% 89.1%
Hier1 20 92.3% 93.0% 93.3% 91.6% 91.9% 92.3%
Hier1 50 | | | 92.3% 92.3% 93.7%
Hier2 10 87.9% 69.7% 90.9% 78.8% 72.7% 72.7%
Hier2 20 84.9% 84.9% 84.9% 81.8% 81.8% 78.8%
Hier2 50 | | | 78.8% 78.8% 72.7%

Table 4: Accuracy results for hierarchical and 
at learning employing feature
selection.

duces 8{41% fewer errors than the 
at methods for Hier1 and somewhat more
modest, but still substantial, relative gains for Hier2 (although the absolute
accuracy gains are much clearer in this case).

The only exception is found when the hierarchical method is applied on
the Hier2 dataset where 10 features are used in conjunction with the KDB-1
learning algorithm. A closer examination of this run reveals that, while no
errors were made at the top classi�er in the hierarchy, the classi�er for the
Acquisitions subtopic caused many of the classi�cation errors. Given that this
classi�er was trained on only 24 instances, it is quite possible that a statistical
anomaly in the data to which the algorithm was sensitive led to the induction
of a poor classi�er in this case. We see that even here, the 
at method did not
perform much better. In the Hier1 dataset, which has many more instances
from which to glean statistical data, we dot not encounter such problems. In
general, applications where automated hierarchical classi�cation is desirable,
such as Web directories, the volume of available data will help control for such
anomalies.4

Finally, it is important to compare the results when the 
at method is
allowed to utilize 50 features, making it more comparable with the number of
features that the hierarical method actually gets to see. Even in this case, the
hierarchical method clearly outperforms the 
at method in general, although
by a smaller margin. Furthermore, when performing this comparison, we must

4Yahoo, for example, now claims to have close to 100,000 Web pages classi�ed in their

hierarchy.
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Topic 10 most discriminating words

top level bank, dollar, dealer, oil, agriculture, tonnes, grain, wheat, corn, usda

Grain home, london, k, wheat, maize, corn, enhancement, winter, pl

Money E�ects dollar, pct, japan, tokyo, yen, money, repurchase, k, stg, system

Crude oil price, production, ship, cubic, gas, natural, iran, barrel, attack, tanker

Table 5: The 10 most dicriminating words in the hierarchical method for the
Hier1 dataset.

also keep in mind the computational costs. As we have seen, the complexity
of algorithms for learning expressive classi�ers grows rapidly with the number
of features. Even when the grown is quadratic, as in the KDB and TAN
algorithms, it is signi�cantly more expensive to learn a single classi�er over
50 features than to learn several classi�ers over only 10 or 20 features each.
Furthermore, if we wish to construct even more accurate models by using a
real Bayesian network learning algorithm, this task may be achievable in the
case of 10 features, but is clearly infeasible in the case of 50.

Our results also show that the feature selection stage does serve to focus the
algorithm on the features relevant to the local classi�cation task. Table 5 shows
the set of 10 features (words) found to be most dicriminating at each level of
the hierarchy learned for the Hier1 dataset. At the top level of the hierarchy,
we see a selection of high-level terms from the various major topics. Some
of these are no longer indicative at the lower levels. Thus, for example while
the term \agriculture" is useful for identifying documents in the Grain topic,
it is not useful for distinguishing among its subtopics. Rather, we see more
speci�c words (such as \corn", \maize", and \wheat") that help distinguish
between the two subtopics (Corn and Wheat) of the Grain topic. Similarly,
the the Money E�ects topic contains terms that help distinguish documents
about the Dollar (many of which relate to \japan" and the \yen") vs. articles
that relate to Interest Rates (which are generally measured in \pct"). Finally,
the feature selection for the Crude Oil topic autonomously homed in on all of
the terms appearing in the names of its various subtopics (\natural", \gas",
and \ship").
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5 Conclusions

The recent proliferation of systems that hierarchically organize massive amounts
of text-based documents calls for algorithms that hierarchically categorize new
documents as they come in. We describe an approach which utilizes the exist-
ing rich hierarchical structure in order to facilitate this process. Rather than
building a single massive classi�er, our approach generates a hierarchy of clas-
si�ers, utilizing feature selection to tailor the feature set of each classi�er to
its task. As we have shown, the resulting reduction in the size of the classi-
�er allows us to obtain signi�cantly higher accuracy, a reduction due both to
increased robustness and to our ability to use more accurate (but also more
complex) classi�ers.

In future work, we hope to pursue the use of more expressive (and compu-
tationally more expensive) classi�ers at the nodes of the hierarchy. In this way
we hope to be able to obtain not only better classi�cation results, but also be
able to handle text collections with a wider variety of statistical characteristics.

We would also like to investigate several problems that are speci�c to the
use of a hierarchy of classi�ers. In particular, we have already mentioned the
problem of recovering from classi�cation errors early in the hierarchy. We
would also like to investigate the problem of discovering new classes in the
hierarchy, when we have multiple documents that don't \�t in" nicely.

Most importantly, we intend to investigate the issue of scalability by ap-
plying this method to a wider variety of text datasets. In particular, wse hope
to integrate such a classi�cation method into a larger information retrieval
system, thereby making use of existing subject hierarchies such as commercial
Web directories.
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