Integrating Information by Outerjoins

and Full Disjunctions
(Extended Abstract)

Anand Rajaraman
Jeffrey D. Ullman
Department of Computer Science

Stanford University
{anand, ullman}@cs.stanford.edu

Abstract

Our motivation is the piecing together of tidbits of in-
formation found on the “web” into a usable information
structure. The problem is related to that of computing
the natural outerjoin of many relations in a way that
preserves all possible connections among facts. Such a
computation has been termed a “full disjunction” by
Galindo-Legaria. We are thus led to ask the question
of when a full disjunction can be computed by some
sequence of natural outerjoins. The answer involves a
concept of from Fagin [1983] called “y-acyclic hyper-
graphs.” We prove that there i1s a natural outerjoin
sequence producing the full disjunction if and only if
the set of relation schemes forms a connected, y-acyclic
hypergraph.

I. Motivation

Let us imagine we are constructing an information re-
source that accepts queries about university informa-
tion. We gather our information from the on-line in-
formation found at the various universities and their
schools or departments, and we integrate the informa-
tion into an object structure. In particular, these struc-
tures follow the OEM (Object-Exchange Model) of Pa-
pakonstantinou, Garcia-Molina, and Widom [1995] that
is used in the Tsimmis information-integration project
at Stanford. This model supports tree-structured “ob-
jects.” Each object has a label and may be atomic or
have zero or more subobjects.

Example 1.1: Figure 1.1 suggests an object with some
subobjects and their labels. That is, it shows that a uni-

Work supported by NSF grant IRI-92-23405, ARO grant
DAAH04-95-1-0192, and USAF contract F33615-93-1—
1339.

Univ.

™~

Dept. Addr.

N

Student

Faculty

Fig. 1.1. An OEM object structure.

versity object might have one or more address subob-
jects and some department subobjects. Address objects
are atomic, presumably string-valued. Department ob-
jects have faculty and student subobjects. O

Elements of information correspond to leaves of
such a tree. Thus, in Fig. 1.1, we would use facts
such as “Jeff Ullman is a faculty member in the CS
Department at Stanford,” corresponding to the Faculty
leaf in Fig. 1.1, or “the address of Stanford Univer-
sity is Stanford CA 94305, corresponding to the Ad-
dress leaf. Note that information elements correspond
to paths from root to leaf, and there is little utility
in partial-path information such as “Jeff Ullman is a
faculty member in some CS department” or “Stanford
University has a CS department.”

Hypergraph Representation of OEM Structures

We may thus think of information elements as corre-
sponding to tuples in relations whose schemes corre-
spond to the labels of root-to-leaf paths in the OEM
structure.

Example 1.2: Figure 1.1 corresponds to the database
scheme {UDF UDS,UA}, where we have used abbre-
viation U for “University,” and appropriate letters for
the other labels. O

Database schemes are often profitably represented
as hypergraphs, whose nodes are the attributes (equiva-
lently, OEM labels) and whose hyperedges are the rela-

tion schemes or sets of attributes; see Fagin, Mendelzon,
and Ullman [1982], Ullman [1989], or (for an equivalent
notation) Bernstein and Goodman [1981]. For instance,
the database scheme implied by Fig. 1.1 is shown in
Fig. 1.2.

/

Fig. 1.2. Hypergraph representation of
university OEM objects.

Maximizing the Connections Among Facts

Suppose we know that Ullman is in the Stanford CS
Dept., and that the address of Stanford is “Stanford
CA 94305.” We would like to infer that “Stanford CA
94305” is an address for Ullman. In general, if we have
any collection of facts that agree on common attributes
(are join-consistent) we would like them to be available
in the “result” of this collection of facts.

This question is very much like computing a uni-
versal relation (Maier, Ullman, and Vardi [1984], Maier,
Rozenshtein, and Warren [1986], Ullman [1989], e.g).
However, the universal-relation work has dealt primar-
ily with exploiting dependencies in the data and with
eliminating bogus connections. We believe that at
least for the OEM tree-structured objects, any join-
consistent connection should be treated as valid. Thus,
we want what Galindo-Legaria [1994] calls a full dis-
Junction: a relation with nulls (represented by L) such
that every set of join-consistent tuples in our database
appears within a tuple of the full disjunction, with ei-
ther L or a concrete value in each attribute not found
among our set of tuples.

Example 1.3: Following the notation of Example 1.2,
suppose we have tuple udf in relation UDF and tuple
ua in relation U A. In the full disjunction, we must find
a tuple over the complete set of attributes U DF S A that
is either udf 1L a or udf sa for some concrete student name
s. 0

We note that the relation scheme over which we
wish to maximize connections without losing informa-
tion need not correspond to a hierarchical structure
as in the previous examples. In general, the relations
may come from either the same or different relational
databases as well. For example, it is easy to imagine

a relational database with the relation scheme shown
in Fig 1.2. A typical application arises in data ware-
housing, where we wish to store a computed view on
the base relations that maximizes connections between
their tuples.

I1. Outerjoins and Full Disjunctions

The outerjoin is a variant of the join in which tuples of
one relation that do not match any tuple of the second
relation are added to the result, padded with nulls. This
operation is part of the new SQL92 standard (ANSI
[1992]), which has resulted in increased interest in its
implementation. Also, as suggested by the examples of
Section I, we believe that the outerjoin is more appro-
priate than the conventional (or “inner”) join, because
the outerjoin is monotonic (the projection of the out-
erjoin onto its operands’ schemes contains the operand
relations). However, the join is not monotonic in this
sense.

Unfortunately, the outerjoin operator is not as-
sociative and therefore does not generalize readily to
more than two relations. Thus, when outerjoining three
or more relations, we really want the full disjunction,
which is commutative, associative, and monotonic. In
this section we give formal definitions of the outerjoin
and the full disjunction.

Natural Outerjoins

In this paper, we shall consider only the natural out-
erjoin, denoted %, because it matches the model in-
troduced in Section I. Let R and S be two relations.
Since these relations may be the result of outerjoins, it
is possible that some tuples in R and/or S contain nulls.
Then R s« S has scheme R U S (i.e., the union of the
attributes of R and S)® and consists of the following
tuples:

1. All tuples in R > S, the natural join of R and S.
To be precise, this join does not allow nulls to be
equated. Thus, the tuples ¢ produced in this step
are all those over scheme R U S such that there are
tuples 7 in R and s in S that agree and are nonnull
in all the attributes of R N S; the resulting tuple
t is the one that agrees with r and/or s on each
attribute of RU S.

2. For every tuple 7 in R that joins with no tuple of S
(i.e., Tr(R > S) does not contain r), a tuple with
r in the attributes of R and L in the attributes of
S—R.

3. For every tuple s in S that joins with no tuple of
R, a tuple with s in the attributes of S and L in

3 We use the convention that R and S stand both for the
relations themselves — the sets of tuples — and the relation
schemes — the sets of attributes. We trust that context will
make clear which is meant.

attributes of R — S.

Example 2.1: Continuing with the relations of Exam-
ples 1.2 and 1.3, suppose that U DF contains only the
tuple udf, U A has only the tuple ua, and U DS is empty.
Then UDS 4 UA has scheme U DSA and its only tuple
is ul La, formed by rule (2) above. If we then compute
UDF 4 (UDSA), we get scheme UDFSA with the
two tuples udf L1 and ul l la.

Notice that we do not get a tuple in which udf and
ua are connected, even though they are join-consistent.
The intuitive reason is that by joining U DS and UA
first, we extended wa with a L in the D attribute pre-
maturely, making it impossible to connect ua with udf
later. Note that the definition of outerjoin does not
permit L to match any value, including 1, when taking
the natural (inner) join.

However, if we join the three relations in what we
shall see later is the “proper” order, (U DF rq UDS) 4
UA, we get tuple udf L over scheme U DF'S for the first
outerjoin and then join this tuple with ua in the sec-
ond outerjoin to get udf La over scheme UDF SA in the
result. O

Tuple Subsumption

We say that tuple ¢ subsumes tuple u if ¢ and u agree
in every component where u 1s not 1. That is, t is
obtained from u by replacing zero or more nulls by con-
crete values. For instance, udf La subsumes ul 1 La.

Connected Hypergraphs

Normally, we shall be interested in collections of re-
lations whose schemes form a connected hypergraph.
While the intuitive meaning of “connected” should be
obvious, let us formally define a hypergraph to be dis-
connected if we can partition its hyperedges into two
nonempty sets such that no node appears in members
of both sets. Otherwise, the hypergraph 1s connected.

Full Disjunctions

Let R = Ri, R, ..., R, be relations whose tuples do
not have nulls. We say R is the full disjunction for R if
the following hold:

A. No redundancy: No tuple of R subsumes any other
tuple of R.

B. Tuples of R come from connected pieces of R: Let
t be a tuple of R. Then there is some connected
subset of the relations of R such that ¢, restricted
to 1ts nonnull components, is the join of tuples from
those relations.

C. All connections are represented.

1. Let ty,...,tx be tuples chosen from distinct
relations R;,, ..., R;,, respectively, such that
{Ri,,..., Ri,} is a connected hypergraph.

2. Let the t;’s be join-consistent, in the sense that
for any attribute A, all the components among
the ¢;’s corresponding to attribute A have the
same value.

3. Let ¢ be the tuple that agrees with each of the
t;’s in those attributes appearing among any of
R;,,..., Ri, and that has 1 in other attributes
found among the schemes of R.

Then ¢ is subsumed by some tuple of R.

Example 2.2: For the relations of Example 2.1, the
singleton relation R = {udf La} is the full disjunction.
Clearly (A) is satisfied since there is only one tuple.
(B) is satisfied since the nonnull components of the tu-
ple udf La is the join of the tuples udf from U DF and
ua from UA. TFinally, condition (C) is also satisfied.
The only nontrivial combination of tuples is udf and
ua. The tuple ¢ constructed as in (C3) is udf La, which
is subsumed by a tuple in R, in fact by the identical
tuple. O

The following theorem is useful to know, although
it 1s not used directly in the results to follow.

Theorem 2.1: The full disjunction 1s unique.

Proof: It is easy to see that the only relation R satis-
fying the definition above consists of all those tuples ¢
such that:

a) t is the join of some collection of join-consistent
tuples from a connected subset of the relations
Ry, ..., Ry, padded out with nulls, and

b) There is no additional relation among the R;’s with
a tuple that is join-consistent with ¢. O

The set of tuples described in the proof of Theo-
rem 2.1 is exactly what Lien [1982] calls maztrav (max-
imal traversals). He shows the equivalence of maxtrav
to the set of tuples we described by conditions (A-
C) above. Lien [1982] also gives a result (equivalence
to “network database schemes”) about the same class
of hypergraphs that we consider in this paper — con-
nected, y-acyclic hypergraphs.

Following Theorem 2.1, we shall refer to “the full
disjunction.” We shall use the notation FD(R) for the
full disjunction of some hypergraph or collection of re-
lations R.

Computing the Full Disjunction

We would like to find some simple way of computing
the full disjunction of a set of relations. The problem
was studied by Galindo-Legaria [1994], but only for the
case of non-natural (or “theta”) outerjoins, where all

attributes of both relations are kept in the result, and
connections are represented by predicates on pairs of
attributes, one from each relation.

In general, the full disjunction, as its name implies,
can be computed by

1. Taking the union of all joins of connected subsets
of the relations,

2. Padding with nulls, and
3. Deleting subsumed tuples.

However, that is clearly too expensive to be desirable.
Thus, Galindo-Legaria [1994] gave a test for when some
order of outerjoins is guaranteed to produce the full dis-
junction by itself. This test is simple. Create a graph
whose nodes are the relations and whose edges connect
relations that are constrained by one or more compari-
son; 1f the graph is acyclic then an outerjoin order yield-
ing the full disjunction exists, and if not, then not.*

However, this test does not apply to the natu-
ral outerjoin. In our running example of relations
UDF, UDS, and UA, there are equality constraints
on U between each pair of relations, giving a graph
that is a triangle and therefore cyclic in the sense of
Galindo-Legaria. Yet as we shall see, these three rela-
tions do have an outerjoin order that yields the full
disjunction: (UDF 4 UDS) 4 UA, although, as
was suggested by Example 2.1, the other two orders,
(UDF %4 UA) $q UDS) and (UDS 4 UA) 9 UDF
do not in general yield the full disjunction.’

Thus, we define a sound outerjoin ordering for a
database scheme R = {Ry, ..., R,} to be an expression
in which

1. Each relation appears exactly once,

2. The only operator is 1, and
3. The result is FD(R).

The balance of this paper characterizes those database
schemes that have a sound outerjoin ordering.

ITI. Gamma-Acyclic Hypergraphs

The class of y-acyclic hypergraphs is one of several kinds
of “acyclic” hypergraphs studied by Fagin [1983]. Tt is
a special case of the more common class of “acyclic hy-
pergraph” of Graham [1979], Yu and Ozsoyoglu [1979],
Bernstein and Goodman [1981], or Fagin, Mendelzon,
and Ullman [1982], which Fagin [1983] calls a-acyclic,
Fagin [1983] gives several equivalent definitions of
~v-acyclicity. We shall only give here those definitions

4 Do not confuse this graph and the notion of “acyclicity” with
the hypergraphs and the concept of hypergraph acyclicity
suggested by Fig. 1.2.

5 Note that the outerjoin is commutative although not asso-
ciative, so these are the only three different ways the outer-
join of three relations can be taken.

that are of use in our characterization of the hyper-
graphs for which a full disjunction can be computed
by outerjoins in some order; those are exactly the con-
nected v-acyclic hypergraphs.

Fig. 3.1. A pure cycle.

Pure Cycles

A pure cycle 1s a collection of n > 3 hyperedges and
nodes suggested by Fig. 3.1. Each pair of hyperedges
X; and X;41 (and also X, and X;) have at least one
node A; (or Ay in the case of X, and X;) in common.
Moreover, none of the shared nodes A; appears in more
than the two hyperedges of the pure cycle suggested by
Fig. 3.1. These nodes may appear in hyperedges that
are not part of the pure cycle, however. There may
be more than one node in the intersections shown, but
those nodes must not appear in any other hyperedges
of the pure cycle.

Gamma-Three-Cycles

A v-3-cycle is a set of three hyperedges in the config-
uration of Fig. 3.2. That is, the nodes A, B, and ('
must exist; any other regions of the diagram may or
may not be empty, and the regions containing A, B,
and C may also contain other nodes. Put another way,
there must be some node in all three hyperedges, one
that is in only X and 7, and one that is only in Y and
Z. For example, the smallest v-3-cycle consists of the

three hyperedges {ABC, AB, BC'}.

Gamma-Cycles

A 7y-cycle is a cycle of at least three edges, in the form of
Fig. 3.1. However, unlike the pure cycle, a vy-cycle per-
mits A, to appear in any of hyperedges X5,..., X,,_1,
as well as Xy and X,,. All other nodes Ay,..., A,_1 in
the intersections appear only in those X;’s shown.

X

7

Fig. 3.2. A ~-3-cycle.

Definition of Gamma-Acyclic Hypergraphs

Fagin [1983] defines a hypergraph to be vy-acyclic if and
only if it has no y-cycle. Equivalently, a hypergraph is
~-acyclic if and only if it contains no pure cycle and no
~-3-cycle. A hypergraph is y-cyclic if and only if it is
not vy-acyclic.

Example 3.1: The hypergraph of Fig. 1.2 is y-acyclic.
For one argument, note that there could not be a v-3-
cycle. If there were, only U could be the node in all
three edges. Then, D could serve as one of the nodes
in exactly two of these edges. However, none of the
other three nodes i1s in two of the three hyperedges.
Also, it 1s easy to see that there is no pure cycle in this
hypergraph. O

Fagin [1983] also proves a characterization of ~-
acyclic hypergraphs by Bachman diagrams. Given a
hypergraph #H, we may add to it as additional hyper-
edges all intersections of two or more hyperedges of K.
Let the resulting hypergraph be G. We then create an
(ordinary) graph whose nodes are the hyperedges of G
and for which there i1s an arc from node £ to node F
if £ C F and this containment is as close as possible;
that is, for no edge G is F C G C F. The resulting
graph is the Bachman diagram of #, denoted BD(%).

A Bachman diagram is acyclic if, treated as an
undirected graph, there are no cycles. Acyclic Bach-
man diagrams were studied by Lien [1982] and Yan-
nakakis [1982]. Fagin [1983] proves that hypergraph ¥
is y-acyclic if and only if BD(#) is acyclic.

Example 3.2: The Bachman diagram of the hyper-
graph in Fig. 1.2 is shown in Fig. 3.3. Note that for a
tree scheme like Fig. 1.2, the Bachman diagram looks
almost like the original tree of Fig. 1.1, if we draw the
smaller sets above the larger. In fact, they will be iso-
morphic unless there are nonbranching paths in the tree
scheme, 1.e., an attribute that has only one child. Then,
the nonbranching paths will be collapsed to nodes in the
Bachman diagram. O

U
/ \
UD UA
RN
UDF UDS
Fig. 3.3. Bachman diagram for Fig. 1.2.
B C
AB BC CD

Fig. 3.4. Bachman diagram for {AB, BC',C'D}.

Example 3.3: Consider the y-acyclic hypergraph with
hyperedges {AB, BC,CD}. Its Bachman diagram is
shown in Fig. 3.4. Note that this graph is a tree in
the undirected sense, although it has two “roots” in the
directed sense. O

IV. Gamma Acyclicity is Necessary for
Sound Outerjoin Orderings

The main result of this paper is that y-acyclicity charac-
terizes the hypergraphs for which there is a sound outer-
join ordering. Of course every hypergraph can have the
full disjunction computed by some expression. We are
interested here in only the simplest expressions, where
just the natural outerjoin operator is used. In this sec-
tion we prove that the ~-cyclic hypergraphs do not have
a sound outerjoin ordering. In the next section we show
how to compute the full disjunction with a sound out-
erjoin ordering for any connected vy-acyclic hypergraph.

Our plan for the necessity proof is to consider sep-
arately those hypergraphs that have a 7-3-cycle and
those that have a pure cycle. For each case, we show
how to construct a counterexample. That is, we show
for each possible outerjoin ordering how to find a par-
ticular database for which the ordering is not a sound
outerjoin ordering (i.e., it does not produce the full dis-
junction). All results stated without proof are proved
in the full version of this paper (Rajaraman and Ull-

man [1995]).
Gamma-Three-Cycles Do Not Have Sound Out-
erjoin Orderings

We begin with a technical lemma that gives us needed
counterexamples.

Lemma 4.1: Suppose relations R, .S, and T are such
that

1. There 1s an attribute A in the schemes of relations
S and T that i1s not in the scheme for relation R,
and

2. There 1s an attribute B that is in both R and T
(and possibly S).

Then (R s« S) s« 7' is not a sound outerjoin ordering.

Example 4.1: Let us see two examples of how
Lemma 4.1 can be used in practice. Consider the re-
lations AB, BC', and ABC'. These form the minimal
~-3-cycle, as in Fig. 3.2. By symmetry, there are two
significantly different orders in which we could take the
outerjoin:

1. (AB & ABC) & BC
2. (AB & BC) & ABC

All other orders can be obtained either by commutativ-
ity of outerjoin and/or by interchanging AB with BC'.

For expression (1), Lemma 4.1 applies because
there 1s an attribute ' that is in ABC' and BC', but
not in AB. Also, AB and BC have an attribute, B,
in common. Thus, we expect that expression (1) is not
a sound outerjoin ordering. Specifically, consider the
database AB = {ab}, BC' = {bc}, and ABC = {§. The
full disjunction is {abe}, but expression (2) produces
{abl, Lbc}. Thus indeed we see that order (1) is not a
sound outerjoin ordering.

Similarly, order (2) is not a sound outerjoin or-
dering according to Lemma 4.1. In confirmation, con-
sider the following relations: AB = {ab}, BC' = {§, and
ABC = {abe}. Evidently, the full disjunction is {abc}.
However, when we join AB with BC' we get the tuple
abl. Thus, when we join this result with ABC, there is
no match between tuples ab L and abe, because ¢ cannot
match L. Thus, the result is the two tuples {abl, abe}.
Since one tuple is subsumed by the other, we have not
computed the full disjunction. O

The second ordering in Example 4.1 presents the
weakest argument, since except for the “no redun-
dancy” condition (A) in the definition of full disjunc-
tion, the result would be satisfactory. That is, abc
“looks like” 1t came from both ab and abce; 1t just hap-
pens that the second outerjoin in expression (2) is in-
capable of joining those two tuples together. Our argu-
ment for imposing condition (A) is not just to make our
characterization exact. Eliminating subsumed tuples is
an expensive operation, even more than eliminating du-
plicates in conventional relations. Thus, it is reasonable
to require “good” methods for computing the full dis-
junction to avoid the need for elimination steps.

Lemma 4.2: No y-3-cycle has a sound outerjoin order-
ing.

Proof: Consider the diagram of Fig. 3.2. If there were
a sound outerjoin ordering for the three relations X, Y,
and Z, one of them would have to come last. If 7 is
last, then attribute B of Fig. 3.2 can play the role of B
in Lemma 4.1, and A or C' of Fig. 3.2 can play the role
of A in Lemma 4.1, telling us we do not have a sound
outerjoin ordering.

If X is last, then we can write the expression as
(Y 4 Z) ta X. Note that the outerjoin is commuta-
tive, so this expression is equivalent to (7 4 V) 1 X;
1.e., we may choose whichever of Y and Z we wish to
put in the role of S of Lemma 4.1. Given our choice,
the attribute A in expression (Y tq Z) sa X plays the
role of A in Lemma 4.1 and B plays the role of B, again
showing we do not have a sound outerjoin ordering.

Finally, Y could come last in the outerjoin expres-
sion. This case is symmetric to the case where X comes
last. O

Pure Cycles Do Not Have Sound Outerjoin Or-
ders

Now, let us consider a hypergraph that is a pure cycle
as suggested by Fig. 3.1.

Lemma 4.3: No hypergraph that is a pure cycle has a
sound outerjoin ordering.

Proof: In what follows, we shall interpret subscript ¢
in X; in the “end-around” sense. That is, X; refers to
that X; such that 1 < j < n and ¢ and j leave the same
remainder when divided by n. Thus, X is synonymous
with X, X,,41 means Xi, and so on. Subscripts for
the attributes A; will be treated the same way.

Suppose this hypergraph has a sound outerjoin or-
dering E. In E, the final outerjoin has two arguments,
one of which is the outerjoin of some set &1 of the hy-
peredges X7, X5, ..., X, and the other is the outerjoin
of the other hyperedges, say &2. Without loss of gen-
erality, assume that S5 has at least two members; the
fact that n > 3 assures us that at least one set can play
the role of S».

Thus, we can find some sequence of one or more hy-
peredges in Sy, say X;, ..., X}, such that neither X;_;
nor X;4q are in §;. Now, consider a database where
Xi,...,X;41 each contain one tuple, and these tuples
are join-compatible. All other relations are). Then the
full disjunction of these relations contains the one tuple
that is the join of all the tuples in X;, ..., X;41, padded
with nulls.

Now consider what happens when we evaluate F
with these relations. The result of the outerjoin of the
relations in &3 cannot contain a tuple that is nonnull in
attribute A;_1, an attribute in the intersection of X;_;
and X;. The reason is that since S, has at least two
members, ¢ cannot be j — 2 (modulo n). Thus, X;_; is
not X; or X;.1, and hence A;_; is not in X;4,.

As a consequence, when we apply the last outer-
join of E| we cannot get a single tuple. Whatever tuple
or tuples the &; side has produced from X;,..., X;, at
least one of these tuples has a nonnull value in A;_;
(ideally, only one tuple, the join of all the tuples from
Xi,...,X; is produced, but there could be more if the
81 side of E itself fails to produce the full disjunction
of its relations). Since this tuple cannot join with some
tuple from &9, the result of £ cannot contain only one
tuple. Therefore, £/ does not produce the full disjunc-
tion for this database. O

Completing the Necessity Proof

Now we must extend Lemma 4.2 to all hypergraphs
that include a 4-3-cycle among their hyperedges and
Lemma 4.3 to all hypergraphs that include a pure cy-
cle among their hyperedges. First, we need a technical
lemma that says, in effect, that if we throw an empty
relation into an outerjoin expression, we cannot turn an
unsound outerjoin ordering into a sound one.

Lemma 4.4: Suppose R and S are two relations, and
let R’ be R with its tuples extended with nulls in one
or more attributes that do not appear in the scheme of
R (e.g., R' could be the result of outerjoining R with
some empty relation). Then:

a) Every tuple in R’ 54 S is subsumed by some tuple
in R 4 S, extended with nulls to attributes of
R —-R-5.

b) 1If ¢; and ¢5 are tuples of R 4 S, and t; properly
subsumes ty (that is, ¢; subsumes ¢; and is not
equal to t2), then R’ 4 S has a pair of tuples one
of which properly subsumes the other. We shall
call such a pair a subsuming pair.

Proof: The proof is straightforward and involves a
somewhat lengthy analysis of possible cases. The details
are in the full version of this paper. O

Theorem 4.1: If a hypergraph has a sound outerjoin
ordering, then it must be ~-acyclic.

Proof: Suppose not; i.e., hypergraph A is not y-acyclic
but has a sound outerjoin ordering, F. By Fagin [1983],
every non-vy-acyclic hypergraph contains as a subhyper-
graph either a ~-3-cycle or a pure cycle. We consider
two cases:

Case 1: Suppose H has a v-3-cycle. Construct from E
another expression F' that is £ with all the operands
not in the +-3-cycle deleted. Assign relations to the
operands of F' as in the proof of Lemma 4.2, so that F'
is not a sound outerjoin ordering for its relations. The
exact relations chosen depends on the order in which
the three operands are grouped in F', but whatever the
order there 1s some suitable assignment of two single-
ton relations and one empty relation. Assign §} to the

relations of all other operands in F.

Let R be the result of evaluating F' on the database
we constructed. In the first case, where a connection
that should be in the full disjunction is missing in R,
Lemma 4.4(a) tells us that adding the empty relations
at various points in £ cannot produce a tuple that is
not subsumed by a tuple of R, suitably padded with
nulls. Thus, E also fails to produce the full disjunction
for its arguments.

In the second case, where a subsuming pair exists in
R, Lemma 4.4(b) assures us that a subsuming pair also
exists when FE is evaluated on the arguments defined
above. Thus again F fails to produce the full disjunc-
tion. We conclude that E was not a sound outerjoin
ordering as assumed.

Case 2: H has a pure cycle. Construct from E another
expression [that is £/ with all operands not in the pure
cycle deleted. Construct a database where the operands
of F are assigned relations as in the proof of Lemma 4.3,
so that F is not a sound outerjoin ordering. Assign (} to
the relations of all other operands in E. An argument
analogous to that for Case 1 shows that F is not a sound
outerjoin ordering as assumed. O

V. Gamma Acyclicity is Sufficient for
Sound Outerjoin Orderings

Now, let us prove the converse: for every y-acyclic hy-
pergraph there is a sound outerjoin ordering. The heart
of the proof is the notion of “y-decomposition”: a way
to split a hypergraph into two pieces. If the original hy-
pergraph is y-acyclic, then the pieces are also y-acyclic
(the existence of a y-cycle in one of the pieces implies
a vy-cycle in the whole). We recursively produce the
full disjunction of the pieces and use the definition of
y-decomposition (which appears below) to claim that
the full disjunction of the original hypergraph is the
outerjoin of the full disjunctions of the pieces.

A Problem With Disconnected Hypergraphs

Before proceeding, we must note an additional condi-
tion: no disconnected hypergraph has a sound outerjoin
ordering. The reason is that if the hypergraph is discon-
nected, then at some point in an outerjoin expression we
must take a Cartesian product. The product connects
all tuples of one component with all tuples of another,
thus giving us too many connections.

When we need to combine two or more relations
with disjoint sets of attributes, the appropriate oper-
ation is the outerunion, that is, the tuples of each re-
lation padded with nulls in the attributes of the other
relation(s). With that addition to our repertoire, we
can handle all y-acyclic hypergraphs. We construct a
sound outerjoin ordering for each connected component
and, if we wish to combine them, use the outerunion
operator.

Gamma-Decompositions

Let #H be a connected hypergraph. Then (1, H2) is a
~-decomposition of H if:

1. H; and H, are nonempty, disjoint sets of hyper-
edges of H that together include all the hyperedges
of # (i.e., H1 and H, partition the hyperedges of

2. The nodes of H1 and Hs are each the union of the
hyperedges of these hypergraphs (i.e., #; and H»
are hyperedge-generated).

3. Let X be the set of nodes that are in both #; and
Hs. Then

a) X is not empty, and

b) Every hyperedge of H either contains X or is
disjoint from X.

Example 5.1: Consider the hypergraph H of Fig. 1.2.
The decomposition in which H; = {UDF,UDS} and
Ho = {UA} is a y-decomposition. In proof, the inter-
section of the node sets is U. Every hyperedge of H
either “contains U or is digjoint from 1t”; in particular
each of the hyperedges contains U.

However, #y = {UDF} and H: = {UDS,UA}
is not a vy-decomposition. To see why, note that the
intersection of the sets of nodes is U D. But hyperedge
U A neither contains U D nor is disjoint from 1t. O

The importance of v-decompositions is in the next
lemma, which says that we can get the full disjunction
for a hypergraph by decomposing it, recursively com-
puting the full disjunctions of the pieces, and combining
them with the outerjoin operator.

Lemma 5.1: Let (H1,Hs2) be a y-decomposition of a
connected hypergraph #, and suppose Ry = FD(H;1)
and Rs = FD(H2). Then Ry 4 Rs = FD(H).

Proof: Let X be the intersection of the nodes of H;
and Ho. We show that tuple ¢ is in Ry 1 R if and
only if it is in FD(H).

IF: First, consider a tuple ¢ in FD(H). Let G be the
connected subset of the hyperedges of H such that ¢ is
formed by the join of one tuple from the relation corre-
sponding to each hyperedge in G, padded with nulls if
necessary. The situation is suggested in Fig. 5.1.

Let t; be the restriction of ¢ to the nodes of H;, for
¢t = 1,2. Then t; is the join of the relations correspond-
ing to the hyperedges in G N H;, for ¢ = 1,2. Since G is
connected, and the only way hyperedges in H; and H»
connect is through the set of nodes X, it follows that
G N H; must be connected for ¢ = 1,2 (the possibil-
ity that one of these hypergraphs is empty is not ruled
out).

By hypothesis, t;, padded with nulls if necessary, is
in relation R;, for ¢ = 1,2. Let us first suppose ¢; 1s all

7‘[1 7'[2

Fig. 5.1. Diagram for Lemma 5.1.

nulls; that is, G C Ho. Then ¢t = ¢ (padded), and when
we take the outerjoin Ry i Rs, t2 is padded with nulls
to create the tuple ¢. Similarly, if £5 1s all nulls; then
t = t; (padded), and ¢ is again seen to be in Ry s« Ra.

Now, suppose neither ¢ nor t5 is all nulls; i.e., G
intersects both H1 and Hs. Since G is connected, there
must be some hyperedge F; of G N H; and some other
hyperedge Es in G N H, that each contain the set of
attributes X. Thus, #; and #5 each are nonnull in the
attributes of X. Of course, since they each come from ¢,
they agree on these attributes, so in Ry sx Rs they join
to make t. We have thus proved that FD(#) C Ry
Rs.

ONLY IF: The converse is easy. Suppose tuples ¢; and
ts — from R; and Rj, respectively — join. Then {;
is in FD(H;), for ¢ = 1,2. That is, ¢; is the join of
some maximal set of tuples chosen from the relations
corresponding to connected sets of hyperedges of H;,
for + = 1,2. Since these sets of hyperedges must each
include one that contains X (or else ¢; and ¢5 could not
joinin Ry 4 Rs), the union of these sets of hyperedges
is also connected.

Let ¢ be the tuple that agrees with ¢; and ¢ in all
attributes. Then ¢ must be maximal, in the sense that
we cannot extend its nonnull components by joining in
some tuple of another relation. For if we could do so,
then either ¢; or ¢ would not have been maximal, and
thus not in their respective full disjunctions. Thus, ¢ is
in FD(H), proving Ry v Rs C FD(H). O

Gamma Reductions

Now we show how to y-decompose every v-acyclic hy-
pergraph into single hyperedges. The recursive pro-
cess of performing 7y-decompositions until no more -
decompositions are possible is called y-reduction. We
shall show that for y-acyclic hypergraphs, y-reduction
leads to a collection of singleton hypergraphs (hyper-
graphs with one hyperedge). We then use the ~-
reduction to produce a sound outerjoin ordering for ev-
ery connected v-acyclic hypergraph. Our first job is to

show that we can take a single step of y-decomposition
whenever we have to.

Lemma 5.2: Every connected ~v-acyclic hypergraph of
more than one hyperedge has a y-decomposition.

Proof: Consider connected ~-acyclic hypergraph #.
Construct 1ts Bachman diagram, which must be acyclic.
Choose X to be some minimal node of the Bachman
diagram, that is, a set of nodes of H such that no proper
subset is a node of the Bachman diagram.

We claim that every hyperedge of H either con-
tains X or is disjoint from it. For if £ were a hyperedge
for which F N X were neither § nor X, then F N X
would be a node of the Bachman diagram and there-
fore X would not be minimal. Thus X can play the
role required of it in condition (3) of the definition of
“~y-decomposition.” There are two cases, depending on
whether or not the removal of X from the Bachman
diagram partitions that graph into more than one con-
nected component.

Fig. 5.2. A minimal node X with one child.

CASE 1: X has only one adjacent node in the Bachman
diagram; i.e., the Bachman diagram looks like Fig. 5.2.
Now X must be a hyperedge of H (rather than the
intersection of hyperedges), or else there would be no
reason to have X in the Bachman diagram. Thus, we
may choose H; = {X} and M2 equal to all the other
hyperedges. Some hyperedge of Hs must contain X, or
else H is not connected. Thus, (H1,H2) meets all the
conditions of a y-decomposition.

CASE 2: Removal of X divides the Bachman diagram
into two or more connected components, as suggested
in Fig. 5.3. Pick any one of the components, and let 1
be the set of hyperedges of H among this component
(recall that some nodes of the Bachman diagram may
represent intersections of hyperedges, rather than the
hyperedges themselves). Pick X and the hyperedges
among the remaining components as Hs. Again, the
~-decomposition decomposition conditions are clearly
met. O

Constructing a Sound Outerjoin Ordering

We can now use Lemmas 5.1 and 5.2 to construct the
sound outerjoin ordering for a connected ~-acyclic hy-
pergraph.

Fig. 5.3. A minimal node X with several children.

Algorithm SOJO:
INPUT: A connected, v-acyclic hypergraph .
OUTPUT: A sound outerjoin ordering for #.

METHOD: Begin by constructing the Bachman diagram
for H.° Recursively partition H and BD(H) by selecting
minimal nodes of the Bachman diagram as suggested in
Lemma 5.2.

BASIS: For the basis, one hyperedge, return the relation
for that hyperedge; it is clearly FD(H).

INDUCTION: For the induction, suppose H has m > 1
hyperedges.

1. Find a y-decomposition of H, say (K1, H2). Such
a decomposition can be found by the method of
Lemma 5.2.

2. Partition BD(H) into two pieces corresponding to
Hi and Hs. In Case 1 of Lemma 5.2, BD(#H1) is X
alone, and BD(H32) is all the other nodes. In Case 2
of Lemma 5.2 we simply remove X, separate the
components of the Bachman diagram, and include
X in BD(H>) if needed. That is, if X is a hyperedge
of H, it goes in Hy. If Ho is formed from more
than one connected component, then again X goes
in BD(#H32). Otherwise, X is in neither BD(#;) nor
BD(H>).

3. Recursively find expressions E; and FE» that are
sound outerjoin orderings for H; and K, respec-
tively.

4. Return the expression Fy pq Fy. O

Example 5.2: In Example 5.1 we learned that a ~-
decomposition for our running example of Fig. 1.2 was
Hi = {UDF,UDS} and Ho = {UA}. This decom-
position is based on selecting X = U in the Bachman
diagram of Fig. 3.3. The resulting Bachman diagrams
for the components are shown in Fig. 5.4. Note that U
is not needed in either.

Recursively, we can decompose H; into {UDF'}
and {UDS}. Thus, one sound outerjoin ordering is
UDF q UDS (for 1), and the other is UA (for H5).

6 M. Yannakakis (private communication, July, 1995) points
out that the Bachman diagram construction for a vy-acyclic
hypergraph takes only linear time.

UD UA

N

UDF UDS

Fig. 5.4. Decomposing the Bachman diagram
for Example 5.2.

The sound outerjoin ordering for the entire hypergraph
is (UDF s UDS) sq UA. O

Example 5.3: Consider hypergraph {AB, BC, C D} of
Example 3.3 and its Bachman diagram in Fig. 3.4. Here,
we have a choice of minimal nodes — B or C. Let us
choose B. When we delete node B from Fig. 3.4 we get
the two Bachman diagrams of Fig. 5.5.

AB C

N

BC ¢D

Fig. 5.5. Decomposing the Bachman diagram
for Example 5.3.

Thus #y, = {AB} and Hy = {BC,CD}. The de-
composition of the former is a basis case; we just return
expression AB. The latter is decomposed by deleting '
and results in the sound outerjoin ordering BC' 54 C'D.
Completing the recursion, we join these to get sound
outerjoin ordering AB tq (BC C'D). Of course, had
we decomposed on C first, we would get another sound
outerjoin ordering, (AB 1 BC) s CD. O

Example 5.4: Let us modify Example 5.3 by adding
B to the hypergraph; that is, ¥ = {AB, BC,CD, B}.
The Bachman diagram is the same: Fig. 3.4, but now
B is a “real” node rather than an intersection. That
change affects how we decompose.

AB B C

NN

BC ¢D

Fig. 5.6. Decomposing the Bachman diagram
for Example 5.4.

We still have the choice of decomposing first on B
or (; let us again choose B. H; is still AB alone, but
Ho also includes B. Thus, the two Bachman diagrams
are as shown in Fig. 5.6. H; is a basis case producing

expression AB as in Example 5.3. However, Hs may
still be decomposed in two ways: via B or (/. Suppose
we choose B again. Then Case 1 of Lemma 5.2 applies,
and we let Hqy = {B} and Hao = {BC,CD}. BD(Ha1)
has only node B, while BD(#22) has the nodes BC,
CD, and C of Fig. 5.6.

We recursively compute sound outerjoin ordering
BC g CD for H#95 and B for Ho;. These are joined to
get the sound outerjoin ordering B tx (BC = C'D) for
Hs. Last, we produce expression AB X (B = (BC' 4
C'D)) for #. This expression is one of several possible
solutions. O

Theorem 5.1: Algorithm SOJO produces a sound out-
erjoin ordering for A.

Proof: The proof is a simple induction on the number

of hyperedges of .

BASIS: For the basis, one hyperedge, clearly the relation
for this hyperedge is its full disjunction.

INDUCTION: Let A have m > 1 hyperedges and as-
sume the theorem for smaller hypergraphs. Since every
subhypergraph of a y-acyclic hypergraph is a y-acyclic
hypergraph (because a y-cycle of one part is a y-cycle
of the whole), we know H; and #H» are smaller y-acyclic
hypergraphs. By the inductive hypothesis, both compo-
nents have sound outerjoin orderings. By Lemma 5.1, if
we apply the outerjoin operator to the expressions that
are the two sound outerjoin orderings, the result is a
sound outerjoin ordering for H. O

We may summarize the results of this and the pre-
ceding section by:

Theorem 5.2: A hypergraph has a sound outerjoin
ordering if and only if it is connected and v-acyclic.
Moreover, the sound outerjoin ordering can be obtained
by ~-reduction.

Proof: From Theorems 4.1 and 5.1, and the simple ob-
servation that a disconnected hypergraph cannot have
a sound outerjoin ordering because of the Cartesian-
product problem discussed at the beginning of Sec-
tion V. O

VI. Summary

We have proven the following characterization of ~-
acyclic hypergraphs:

e The connected ~v-acyclic hypergraphs are exactly
those hypergraphs for which we can compute the
full disjunction by correctly ordering the outerjoins
of the relations corresponding to its hyperedges
(the sound outerjoin ordering).

There are also several interesting extensions of the re-
sults of this paper that we hope will appear in subse-
quent works:

e We have seen that for a y-acyclic relation scheme,
not every outerjoin ordering is a sound outerjoin or-
dering. The sound outerjoin for a relation scheme
1s not necessarily unique, however. Let us say that
an outerjoin expression is connected if every subhy-
pergraph corresponding to a subexpression is con-
nected. It is clear that no disconnected outerjoin
expression can possibly be sound, because it in-
volves a cross product of some subset of the rela-
tions. However, we can characterize the subclass
of the vy-acyclic hypergraphs for which every con-
nected outerjoin expression is sound; it is those
such that for no nonempty intersection of hyper-
edges 1s there a third edge that is not contained in
the intersection but that contains a proper part of
the intersection.

e There is a small generalization of v-acyclic hyper-
graphs that characterizes those hypergraphs for
which an outerjoin expression, followed by elimi-
nation of subsumed tuples, produces the full dis-
junction. An example is {AB, BC, ABC'}, which,
as discussed in Example 4.1, “almost” has a sound
outerjoin ordering, but produces a relation with
subsumed tuples that need to be eliminated in a
subsequent phase.

e We are investigating techniques to compute effi-
ciently the full disjunction when the hypergraph
is not 7y-acyclic. We are exploring both expres-
sions and programs that combine outerjoins and
outerunions. It is clear that the full disjunction of
any relation scheme can be computed by an expres-
sion involving the above two operators; the ques-
tion we wish to address is finding a minimum such
expression.

e We can use our techniques to characterize those
natural outerjoins that are associative.

e The algorithm described in this paper is being
used in the “Information Manifold” project at Bell
Laboratories to integrate facts gleaned from text
search of HTML and SGML documents into rela-
tions (Levy, Rajaraman, and Ordille [1996]).

Acknowledgements

We wish to thank Mihalis Yannakakis for suggesting the
use of Bachman diagrams to simplify algorithm SOJO
and the proof of its correctness. We also thank Dallan
Quass for initial discussions regarding the problem of
computing full disjunctions for tree schemes.

References

ANSI [1992]. Standard X3.135-1992, American Na-
tional Standards Institute, New York.

Bernstein, P. A. and N. Goodman [1981]. “The power
of natural semijoins,” SIAM J. Computing 10:4, pp.
751-771.

Fagin, R. [1983]. “Degrees of acyclicity for hypergraphs
and relational database schemes,” J. ACM 30:3, pp.
514-550.

Fagin, R., A. O. Mendelzon, and J. D. Ullman [1982].
“A simplified universal relation assumption and its
properties,” ACM Trans. on Database Systems 7:3, pp.
343-360.

Galindo-Legaria, C. [1994]. “Outerjoins as disjunc-
tions,” ACM SIGMOD International Conf. on Manage-
ment of Data, pp. 348-358.

Graham. M. H. [1979]. “On the universal relation,”
technical report, Univ. of Toronto, Toronto, Ont.,
Canada.

Levy, A. Y., A. Rajaraman, and J. J. Ordille [1996].
“Querying heterogeneous information sources us-
ing source descriptions,” ATT Technical Memorandum,
submitted for publication.

Lien, Y. E. [1982]. “On the equivalence of database
models,” J. ACM 29:2, pp. 333-363.

Maier, D., D. Rozenshtein, and D. S. Warren [1986].
“Window Functions,” in Kanellakis, P. (ed.) Advances
in Computing Research 3, JAI Press, London, pp. 213—
246.

Maier, D.; J. D. Ullman, and M. Y. Vardi [1984]. “On
the foundations of the universal relation model,” ACM
Trans. on Database Systems 9:2, pp. 283-308.

Papakonstantinou Y., H. Garcia-Molina, and J. Widom
[1995]. “Object exchange across heterogeneous in-
formation sources,” Intl. Conf. on Data Engineering,
Taipei, March, 1995. Available by anonymous ftp as
pub/papakonstantinou/1994/object-exchange-het-
erogeneous—is.ps from db.stanford.edu.

Rajaraman, A. and J. D. Ullman [1995]. “Integrating
information by outerjoins and full disjunctions,” avail-
able as pub/rajaraman/1995/outerjoin-full.ps by
anonymous ftp from db.stanford.edu.

Ullman, J. D. [1989]. Principles of Database and
Knowledge-Base Systems, Vol. II: The New Technolo-
gies, Computer Science Press, New York.

Yannakakis, M. [1982]. “Algorithms for acyclic data-
base schemes,” Proc. International Conference on Very
Large Data Bases, pp. 82-94.

Yu, C. T. and M. Z. Ozsoyoglu [1979]. “An algorithm
for tree-query membership of a distributed query,”

Proc. IEEE COMPSAC, pp. 306-312.

