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Abstract

We present a truthful auction for pricing advertising
slots on a web-page assuming that advertisements for
different merchants must be ranked in decreasing or-
der of their (weighted) bids. This captures both the
“Overture model” where bidders are ranked in or-
der of the submitted bids, and the “Google model”
where bidders are ranked in order of the expected
revenue (or utility) that their advertisement gener-
ates. Assuming separable click-through rates, we
prove revenue-equivalence between our auction and
the non-truthful next-price auctions currently in use.

1 Introduction

Keyword auctions are an indispensable part of the
business model of modern web search engines and is
responsible for a significant share of their revenue. In
a keyword auction, a set of merchants submit bids on
specific keywords. If a user searches for a keyword,
advertisements from the merchants for that keyword
are shown to the user along with results that match
the keyword. The set of advertisements as well as
their order is determined by the bids submitted for
that keyword. The search engines (which we will
refer to as auctioneers) typically charge a merchant
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only when a user actually clicks on the advertise-
ment. The price charged depends on the bids sub-
mitted. It is clear that merchants will have a prefer-
ence for paying a smaller price and for obtaining a
higher rank in the ordering of advertisements. These
conflicting objectives, along with the fact that click-
through rates vary depending on position and that the
merchants are selfish agents trying to maximize their
own utility, makes this an interesting and involved
auction. The same framework applies for the pricing
of advertising slots on static web content as opposed
to dynamically generated web-pages such as search
engine results.

In the auctions currently being used, the search en-
gine first picks the subset of advertisements to be dis-
played and matches them to slots based on the sub-
mitted bids; the matching criteria is referred to as the
ranking functionand is an integral component of the
existing keyword auctions. Then, the auctioneer de-
cides on a price for each merchant based on the bids
and the allocation. There are two popular ranking
methods:

1. The “Overture” method: Merchants are ranked
in the decreasing order of the submitted bids.
We will call thisdirect ranking.

2. The “Google” method: Merchants are ranked
in the decreasing order of theranking scores,
where the ranking score of a merchant is de-
fined as the product of the merchant’s bid and
estimated click-through rate. We will refer to
this asrevenue ranking.

These ranking functions are an inherent part of the
advertisement philosophies of Overture and Google.
Accordingly, we will assume that these ranking func-
tions are fixed. Thus, we imposerank-equivalence
as a constraint on any auction mechanism that we
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design. Hence the only degree of freedom in the
auction is the price charged per click-through for
each merchant. Both Overture and Google currently
charge a merchant the minimum amount it would
need to bid to retain its current position in the auc-
tion1. This price can never be larger than the submit-
ted bid, since clearly, the submitted bid was enough
to guarantee the merchant its current position. The
utility of a merchant is the expected gain per impres-
sion (i.e. the expected gain each time their advertise-
ment appears) and is defined in section 2. We will
refer to this auction as thenext-priceauction. De-
spite superficial similarity to the second-price auc-
tion [Vic61], the next-price auction is not truthful –
in Section 3.1, we present examples where a mer-
chant has an incentive to bid less than its true value
under the above auctions2.

This motivates the following natural question: can
we design truthful keyword auctions? In a truthful
auction, bidding their true valuations for a keyword
is a dominant strategy equilibrium for the merchants.
While interesting in its own right, the problem of
designing truthful keyword auctions is not merely
academic. First, since truth-telling is not a domi-
nant strategy in the current auction, there is no clear
prescription for merchants to determine their opti-
mum bid. This optimum bid depends in a compli-
cated dynamic fashion on externalities such as the
bids of the other merchants, and it is often neces-
sary for merchants to hire expensive consultants or
intermediaries to determine these bids. A truthful
mechanism would simplify the bidding process sig-
nificantly, since it would require a merchant to only
determine its valuation for the keyword, a quantity
that is intrinsic to the merchant. Secondly, observe
that in the current auctions run by Google and Over-
ture, there is an asymmetric incentive for merchants
– there may be an incentive for a merchant to bid
less than its true value for each click on its bid, but
there is never an incentive for over-bidding. A truth-
ful mechanism would remove this under-bidding in-

1Plus a fixed small increment, but we will ignore this minor
technical detail.

2These examples, as well as all others we show later, use
notation from section 2.

centive3. Finally, in the case of revenue ranking and
with an additional separability assumption (defined
in section 2), a truthful mechanism is efficient in the
sense that it maximizes the total utility obtained by
the auctioneer and the merchants together.

One might be tempted to suggest that the fa-
mous VCG mechanism [Vic61, Cla71, Gro73] or a
weighted and biased variant of it would yield a so-
lution to this problem. However, we show an ex-
ample (Section 3.2) where there does not exist any
set of weights and biases for which the VCG mech-
anism always outputs the same merchant ordering as
the given ranking function. Hence, the VCG mecha-
nism is not generally applicable to our problem. We
further discuss the applicability of VCG in Section 3.

Our results: We design a simple truthful auction
for a general class of ranking functions that includes
direct ranking and revenue ranking. More specif-
ically, we study the case where the merchants are
assigned arbitrary weights which do not depend on
the bids, and then ranked in decreasing order of their
weighted bids – we define this formally in section 2.
Informally, setting all the weights to 1 results in
the direct ranking used by Overture, and setting the
weights equal to the estimated click-through rates re-
sults in the revenue ranking scheme used by Google.

We call our auction the “laddered auction”, since
the price for a merchant builds on the price of each
merchant ranked below it. We show that this auc-
tion is truthful. Further, we show that the laddered
auction is the unique truthful auction, and hence is
trivially revenue-maximal for the auctioneer among
all truthful auctions. The auction is presented in sec-
tion 4 and the analysis is in 5.

We then ask the next natural question: how will
the auctioneer’s revenue change as a result of im-
plementing our truthful auction rather than the next-
price auction currently in use? Since the next-price

3Admittedly, this is at the expense of decreased prices since
our truthful mechanisms require charging the merchant less than
the next-price auction given the same bids. However, the rev-
enue equivalence theorem that we prove later under restricted
scenarios should alleviate this concern.
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auction is not truthful, its revenue should be com-
puted assuming that the bids of the merchants are
in a Nash equilibrium. For general weights and
click-through rates, we have not been able to answer
this question, primarily because we can not obtain
a simple characterization of the Nash equilibria im-
posed by the next-price auction in the general case.
However, when the click-through rates are separable
(i.e. the click-through rates can be separated into a
merchant-specific factor and a position-specific fac-
tor; see Section 2 for a formal definition), we prove
the following revenue equivalence theorem:

There exists apure-strategyNash equi-
librium for the next-price auction which
yields exactly the same revenue for the
auctioneer as our laddered auction.

We give an explicit characterization of this Nash
equilibrium. These results are presented in section 6.
This is arguably the most interesting special case for
the purpose of proving revenue equivalence. Inter-
estingly, we show that there may exist other pure-
strategy Nash equilibria under which the next-price
auction achieves a smaller revenue than the truthful
auction, and yet others under which the next-price
auction achieves a higher revenue. These examples
are presented at the end of Section 6. In fact, start-
ing from the truthful bids, there may be sequences
of self-interested moves (i.e. bid changes) that can
lead to a Nash equilibrium for the next-price auction
of higher or lower revenue than the truthful auction.
This suggests that while the revenue of the current
auctions could be better or worse than the truthful
auction depending on which equilibrium the bids set-
tle into, the revenue of our truthful auction is more
predictable.

Discussion and Related Work: We assume
throughout that the number of slots,K, that the auc-
tioneer is selling for a given keyword does not de-
pend on the submitted bids. Our auction is not truth-
ful if the auctioneer computes the optimum number
of slots (in terms of the revenue generated by our
laddered pricing scheme) to be displayed. Extending

our auctions to this case appears to be a non-trivial
and interesting research direction.

Since the submitted bids are typically used for
more than one impression, in addition to a mer-
chant’s valuation, her budget may also be a param-
eter of relevance [MSVV05, BCI+05]. However, be-
fore undertaking a combined study of budgets and
truthfulness, we need a better understanding and
modeling of the role of budgets. For example, one
method for a merchant to determine its true value
for a keyword may be to just compute the expected
immediate profit per click (presumably, merchants
want users to go to their web-sites to purchase mer-
chandise which results in immediate profit). If the
merchant bids in accordance with the truth-telling
strategy that is dominant for our laddered auction,
it would bid an amount equal to its valuation of the
keyword. Since the price charged by the auctioneer
is never larger than the bid, each click results in an
immediate net profit. Hence, ignoring budgets would
be the right thing to do under this scenario.

Some recent work [MSVV05, BCI+05] has stud-
ies the web advertisement problem with budget con-
straints. Mehta et al. [MSVV05] ignore the game-
theoretic issues and instead focus on the algorithmic
problem of matching merchants to web pages when
their valuations and budgets are known to the auc-
tioneer. Borgs et al. [BCI+05] study the problem
of selling multiple identical units when the agents
are interested in getting multiple units as long as
their payment does not exceed their budget. While
a model with multiple identical units might be appli-
cable to the case of web pages with a single adver-
tisement slot, it is not suitable for web pages with
multiple advertisement slots, as it does not take into
account the inherent differences in visibility between
various positions (slots) on the same page.

2 Model and Notation

There areN merchants bidding forK < N slots
on a specific keyword. Let CTRi,j denote the click-
through rate of thei-th merchant if placed at slotj ≤
K. We assume that CTRi,j is arbitrary, but known to
the auctioneer. Also, we assume that CTRi,j is non-
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increasing inj. Set CTRi,j = 0 for j > K. Let vi

denote the true value of a click-through to merchant
i. We assume thatvi is known to merchanti, but not
to the auctioneer.

As outlined in the introduction, we will assume
that the ranking function is externally specified. We
will consider the class of ranking functions where
merchanti is assigned an a priori weightwi that is
independent of her bid. Letbi denote the bid of
the ith merchant for each click-through. The mer-
chants are ranked in the order of decreasingwibi.
Settingwi = 1 for all i is equivalent to the direct
ranking function (the Overture model), while setting
wi = CTRi,1 reduces to the revenue-ranking func-
tion (the Google model). Merchanti is charged a
price-per-click,pi ≤ bi, which is determined by the
auction. We assume the merchants to be risk-neutral.
As such, if merchanti is placed at positionj, it ob-
tains a utility of CTRi,j · (vi − pi) per impression.
Recall that an auction is truthful if bidding her true
valuation (i.e. bi = vi) is a dominant strategy for
every agent Now, we formally define the next-price
auctions currently being used.

Definition 2.1 (Next-price Auction) Given the
ranking function,R = (w1, w2, . . . , wn) and the
bid vectorb = (b1, . . . , bn), the next-price auction
ranks the merchants in the decreasing order ofwibi

and charges the merchant rankedi an amount-per-
click equal to the minimum bid she needs to have
submitted in order to retain ranki. Let wa and
wb refer to the weights of the merchants rankedi

and i + 1 respectively. And letbb refer to the bid
submitted by the merchant rankedi + 1. Then the
price charged to the merchant rankedi is wbbb

wa
.

We will now describe the separability assumption,
which we will use (only) for our results on revenue-
equivalence. Informally, this assumption states
that the click-through rates can be separated into a
merchant-specific factor and a position-specific fac-
tor.

Definition 2.2 (Separable Click-through Rates)
The click-through rates are said to be sepa-
rable if there exist µ1, µ2, . . . µn > 0 and

θ1 ≥ θ2 ≥ . . . θK > 0 such that the click-
through rate CTRi,j of the ith merchant at thejth

slot is given byµiθj .

There is evidence to believe that this is a reason-
able assumption that holds (approximately) in many
real-world cases.

3 Need for a New Auction

In this section, we begin by giving an example to
show that the next-price auctions being currently
used by Google and Overture are not truthful. In or-
der to construct a truthful auction, the first logical
step is to see whether the famous VCG mechanism
applies to the problem. However, this is not the case,
and we give instances of ranking functions for which
there does not exist any set of weights and biases for
which the ranking output by the VCG mechanism is
always the same as the one output by the given rank-
ing function.

3.1 Next-price Auction is not Truthful

Consider three merchantsA, B andC bidding for
two slots. Let all three of them have a click-through
rate of0.5 at the top slot and0.4 at the bottom slot.
Let the true valuations per click of the three mer-
chants be 200, 180, and 100 respectively. Then, if
all the merchants bid truthfully, merchantA ends up
paying a price of180 per click, making an expected
profit of (200 − 180) × 0.5 = 10 per impression.
In this case, she has an incentive to undercutB by
lowering her bid to110, and make a net profit of
(200− 100)× 0.4 = 40. We note that there is no in-
centive to bid higher than one’s true valuation under
the next-price auction. This is because the price-per-
click charged is the minimum bid required to retain
one’s rank; therefore, in cases where bidding higher
improves one’s rank, the price-per-click charged is
higher than one’s true valuation.

3.2 Weighted VCG may not Always Apply

In this section, we show by means of a counter-
example that even for the simple case of direct rank-
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ing, there does not exist any set of (bid-independent)
weights and biases for which the VCG solution
achieves the same allocation as direct ranking. This
will show that, in general, VCG does not apply to
our problem. Consider two merchantsA andB bid-
ding for two slots on a web page. Let both the mer-
chants have a click-through rate (CTR) of0.4 at the
first slot. For the second slot, merchantA has a CTR
of 0.4 while merchantB has a CTR of0.2. Since
any of the merchants can bid the highest and get the
top slot in direct ranking, both the merchants must
have non-zero weight in order for weighted VCG to
achieve the same allocation as direct ranking. Let
ωA > 0 and ωB > 0 be the weights assigned by
the VCG mechanism to merchantsA andB respec-
tively. Denote the bias assigned to ranking merchant
x followed by y by H(x, y) for x, y ∈ {A,B},
x 6= y. Then, the VCG mechanism will rankB
beforeA if ωA(0.4bA) + ωB(0.4bB) + H(B,A) >

ωA(0.4bA) + ωB(0.2bB) + H(A,B), which is true
wheneverbB > (H(A,B)−H(B,A))/(0.2ωB), ir-
respective of merchantA’s bid. On the other hand,
the direct ranking scheme will rankA before B

wheneverA’s bid is higher thanB’s bid. Thus, the
VCG mechanism does not apply to this instance. In
fact, we show the following general theorem.

Theorem 3.1 Let the number of merchants with
non-zero click-through rates ben > K. If the click-
through rates are not separable, then there exists a
ranking functionR = (w1, w2, . . . , wn) for which
there does not exist any set of weights for which unbi-
ased, weighted VCG always yields the same ranking
as the ranking functionR.

Proof: Let CTRi,j be the click-through rate of
merchant with indexi at thejth position. First note
that if CTRi,j/CTRi,j+1 = CTRi′,j/CTRi′,j+1 for
all values ofi, i′ ≤ n andj ≤ K − 1, then the click-
through rates are separable: just setµi = CTRi,K

andθj = CTR1,j/CTR1,K .
We will show that if for every ranking function

R = (w1, w2, . . . , wn), there exists a set of VCG
weights which always yield the same ranking asR,
then CTRi,j/CTRi,j+1 = CTRi′,j/CTRi′,j+1 for all

values ofi, i′ ≤ n andj ≤ K − 1. We will prove
this by downward induction onj.

First consider the base case ofj = K − 1. Con-
sider any pair of merchants. Re-index the mer-
chants such that the two merchants are indexedj

and j + 1. Let α = CTRj+1,j+1/CTRj,j+1 and
let φ = CTRj,j/CTRj,j+1. Now, consider the
ranking functionR with wj = 1, wj+1 = α.
All the other merchants are assigned a weight of
1. Suppose there exists a weighted VCG mech-
anism that always results in the same ranking as
this ranking function. Letωi be the weight as-
signed by the VCG mechanism to merchanti, nor-
malized such thatωj = 1. Then, the VCG mech-
anism chooses that ranking scheme that maximizes∑K

i=1 ωm(i)CTR(m(i), i)bm(i), wherem(i) is the in-
dex of the merchant placedi in the ranking scheme.
Let ρ be the ratio of the maximum click-through rate
to the minimum click-through rate over all merchants
and positions, and letν be the ratio of the max-
imum VCG weight to the minimum VCG weight.
Also, let βmax = max{1, 1/α) and let βmin =
min{1, 1/α). Consider the following set of bids:
bi = (2n)j−iρνβmax for i = 1, . . . , j − 1, bj = 1,
bj+1 = 1/α, andbi = βmin/((2n)i−(j+1)ρν) for
the rest. Then, it is easy to verify that merchanti

is placed at positioni for i = 1, 2, . . . , j − 1 and
merchantsj andj + 1 share the remaining two po-
sitions (i.e., positionsj and j + 1) under both the
ranking functionR as well as the VCG mechanism.
The ranking score underR of merchantj andj+1 is
exactly the same, namely1. Therefore, the ranking
functionR can be forced to place them in any cho-
sen order by an infinitesimal change in the bids. In
order for the VCG mechanism to produce the same
ranking asR after the change, VCG must rate both
possible orderings ofj andj + 1 equally as well, i.e.
the weighted sum of utilities (with the above bids)
must be the same for both possible orderings.

φ + ωj+1 = 1 + ωj+1
CTRj+1,j

CTRj+1,j+1
(1)

We could also have set the bids of the other mer-
chants such that they get ranks1, . . . , j, leaving mer-
chantsj andj + 1 to compete for rankj + 1 = K.
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Then, a reasoning similar to above would show that

1 = ωj+1 (2)

Putting equations 1 and 2 together, we get

CTRj+1,j

CTRj+1,j+1
= φ.

This completes the proof of the base case.
By the induction hypothesis, CTRi,j/CTRi,j+1 =

CTRi′,j/CTRi′,j+1 for all values ofi, i′ ≤ n andĵ <

j ≤ K − 1. Next considerj = ĵ. Consider the
ranking functionR with wi = 1 for all merchantsi.
Let ωi be the weight assigned by the corresponding
VCG mechanism to merchanti. Again consider a
pair of merchants and re-index merchants such that
the pair is indexedj andj + 1. Let bj = bj+1 = 1.
As before, we can set the bids of other merchants
such that merchanti is rankedi for i = 1, . . . , j −
1, j + 2, . . . ,K, while j andj + 1 share ranksj and
j +1. Since the ranking score given byR is the same
for bothj andj + 1, the VCG mechanism must also
be ambivalent towards their order, i.e.

ωjCTRj,jbj + ωj+1CTRj+1,j+1bj+1

= ωjCTRj,j+1bj + ωj+1CTRj+1,jbj+1

which implies that

ωj+1

ωj
=

CTRj,j − CTRj,j+1

CTRj+1,j − CTRj+1,j+1
. (3)

We can also set the bids of the other merchants
such that they get ranks1, . . . , j, j + 3, . . . ,K, leav-
ing ranksj + 1 andj + 2 for merchantsj andj + 1.
Then, a reasoning similar to above would show that

ωj+1

ωj
=

CTRj,j+1 − CTRj,j+2

CTRj+1,j+1 − CTRj+1,j+2
(4)

From Equations 3 and 4, we get

CTRj,j − CTRj,j+1

CTRj+1,j − CTRj+1,j+1
=

CTRj,j+1 − CTRj,j+2

CTRj+1,j+1 − CTRj+1,j+2

Also, by induction hypothesis, we have

CTRj,j+1

CTRj,j+2
=

CTRj+1,j+1

CTRj+1,j+2

Using the above two equations and some elemen-
tary algebra, we get,

CTRj,j

CTRj+1,j
=

CTRj,j+1

CTRj+1,j+1

This completes the proof by induction.
Although we have presented the theorem above for

unbiased VCG, a similar statement holds for biased,
weighted VCG as well. We can see this as follows.
In each of the constraints 1, 2, 3 and 4 above, the
two sides of the equation represent the rating given
by the VCG mechanism to two different outcomes.
If the biased VCG mechanism adds an unequal bias
to the two outcomes, it can be viewed as adding a
non-zero bid-independent constant term to the right-
hand side. The key idea is that we can scale up the
bids uniformly without changing the ordering output
by the ranking functionR. Thus, the chosen VCG
weights need to satisfy the constraints both for the
scaled and the unscaled bid vector, which is impos-
sible in the presence of a non-zero bid-independent
constant term. Thus, the VCG mechanism must have
added the same bias to both sides of each of the con-
straints, thereby leaving the constraints unchanged.
We state the following theorem without proof.

Theorem 3.2 Let the number of merchants with
non-zero click-through rates ben > K. If the click-
through rates are not separable, then there exists a
ranking functionR = (w1, w2, . . . , wn) for which
there does not exist any set of weights for which bi-
ased, weighted VCG always yields the same ranking
as theR.

Interestingly, VCG is applicable under the sep-
arability assumption, with appropriately chosen
weights. It is easy to verify the following theorem.

Theorem 3.3 Let the click-through rates be separa-
ble. Then the VCG mechanism having merchanti’s
VCG weight set towi/CTRi,1 always produces the
same ordering as the ranking function(w1, . . . , wn).

The above theorem implies that with the separa-
bility assumption, the ranking functions maximize
a certain global utility function. In particular, the
revenue-ranking scheme maximizes the total utility
obtained by the merchants and the auctioneer.
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4 The Truthful Auction

In this section, we will assume without loss of gen-
erality that theith merchant also has theith rank in
the auction. The truthful auction is quite simple: For
1 ≤ i ≤ K, set the price-per-clickpi charged to
merchanti as:

CTRi,ipi =
K∑

j=i

(CTRi,j − CTRi,j+1)
wj+1

wi
bj+1.

(5)
In other words,

1. For those clicks which merchanti would have
received at positioni + 1, she pays the same
price as she would have paid at positioni + 1.

2. For the additional clicks, merchanti pays an
amount equal to the minimum bid required to
retain positioni.

Sincewibi ≥ wjbj for j > i, it follows thatpi ≤
bi. Hence the price charged per click-through can be
no larger than the submitted bid. We will refer to this
auction asLadderedAuction(w1, . . . , wn) or simply
as theladdered auctionwhen thewis are clear from
the context.

5 Analysis

Theorem 5.1 Given fixedw1, . . . , wn, the laddered
auction is truthful. Further, it is the unique truthful
auction that ranks according to decreasingwibi.

Proof: Consider a merchantM . Fix the bids of all
the other merchants arbitrarily. With these bids, let
p(j) be the price charged by the laddered auction to
merchantM if her rank isj, with p(K + 1) = 0.
Note that the price charged depends only on mer-
chantM ’s rank and is independent of her exact bid
value. LetvM be the true valuation of a single click
for merchantM . If merchantM bidsvM , let her be
rankedx. Also, without loss of generality, assume
that all the merchants are indexed such that merchant
j would be rankedj if merchantM bidsvM . Then,
wjbj ≥ wxvx for all j < x and wxvx ≥ wjbj

for all j > x. To show that the auction is truthful,

we will show that merchantM cannot benefit by ly-
ing about her valuation. Among all ranks that give
the merchant the highest profit (i.e.,utility− price),
let r be the rank closest tox, i.e. the one with the
least |r − x|. Now suppose that the merchant can
benefit by lying, i.e.,r 6= x. For a contradiction,
we will show that there is a rank closer tox which
gives at least the same profit. For this, observe that
if r > x, then the change in profit by moving to
rank r − 1 is (CTRx,r−1 − CTRx,r)(vx − wr

wx
br),

which is non-negative. On the other hand, ifr < x,
the change in profit in moving to rankr + 1 is
(CTRx,r+1 − CTRx,r)(vx − wr

wx
br), which is again

non-negative.
To show uniqueness, consider any truthful auction

A that ranks the merchants in the decreasing order of
wibi. Consider any merchantM and fix the bids of
all the other merchants arbitrarily. With these bids,
let pA(j) be the price charged by auctionA to mer-
chantM if she is rankedj, with pA(K + 1) = 0.
Note that in a truthful auction,pA(j) can depend on
the bids of other merchants, but is independent of
M ’s bid. Assume, without loss of generality, that
the other merchants are indexed such that merchanti

would be rankedi if merchantM bids∞. To prove
uniqueness, it suffices to show that for any truthful
auction,

pA(j)−pA(j+1) = (CTRx,j−CTRx,j+1)
wj+1

wx
bj+1

(6)
First suppose that merchantM has valuation

vM = wj+1

wx
bj+1 + ε. Then, if she bids truthfully,

for sufficiently smallε > 0, she is rankedj. The ad-
ditional valuation per impression of being rankedj

instead ofj +1 is given by(CTRx,j −CTRx,j+1)vx.
Thus, this is the maximum amount that can be
charged by a truthful auction for this additional valu-
ation (otherwise, the merchant can benefit by bidding
lower to get rankj + 1). Sinceε can be made arbi-
trarily small, this proves that

pA(j)−pA(j+1) ≤ (CTRx,j−CTRx,j+1)
wj+1

wx
bj+1

(7)
Next, suppose that merchantM has valuation

vM = wj+1

wx
bj+1 − ε. Then, if she bids truthfully,
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for sufficiently smallε > 0, she is rankedj + 1.
The additional valuation per impression of being
rankedj instead ofj + 1 is given by (CTRx,j −
CTRx,j+1)vx. Thus, this is the minimum amount
that can be charged by a truthful auction for this addi-
tional valuation (otherwise, the merchant can benefit
by bidding higher to get thejth rank). Sinceε can be
made arbitrarily small, this proves that

pA(j)−pA(j+1) ≥ (CTRx,j−CTRx,j+1)
wj+1

wx
bj+1.

(8)
Putting together 7 and 8, we get 6, thereby com-

pleting the proof.

Corollary 5.2 For any fixedw1, . . . , wn, the lad-
dered auction is the profit-maximizing truthful auc-
tion that ranks merchants by decreasingwibi.

6 Revenue Equivalence with Sepa-
rable Click-Through Rates

In this section, we compare the revenue of the lad-
dered auction to the revenue achieved by the next-
price auctions currently being used. As mentioned
earlier, truth-telling is not a dominant strategy for the
existing auctions. Thus, we consider the revenue of
the existing auctions under equilibrium conditions,
i.e. a setting of bids for which no merchant can in-
crease her profit by a unilateral change in his bid.

For separable click-through rates (see Defini-
tion 2.2), we show that there exists apure-strategy
Nash equilibrium under the next-price auction that
yields the same revenue as the laddered auction.
Let the weights used by the next-price auction be
(w1, w2, . . . , wn). Re-index the merchants in the de-
creasing order ofwivi so that

wivi ≥ wi+1vi+1 for i = 1, . . . n− 1 (9)

Let the click-through rates be separable with the
click-through rate of merchanti at positionj given
by µiθj . Also let θK+1 = 0. Then, the bidsbi

for this Nash equilibrium are recursively defined for
i = K, . . . , 1 as follows:

wibi =
(

θi

θi−1

)
wi+1bi+1+

(
1− θi

θi−1

)
wivi (10)

with the initializationbK+1 = vK+1.

Theorem 6.1 (Revenue-Equivalence Theorem)
The bids defined by the recursive formula given
in Equation 10 are in equilibrium. Moreover, the
ranking induced by these bids is the same as the
ranking induced by truthful bidding.

Proof: To prove this, we unroll the recursion to
get:

wibi =
1

θi−1

K∑
j=i−1

(θj − θj+1)wj+1vj+1

Thus,wi+1bi+1 is a convex linear combination of
wjvj for j = i + 1, . . . ,K + 1. Since,wivi ≥ wjvj

for j = i + 1, . . . ,K + 1, we getwivi ≥ wi+1bi+1.
We also know thatwibi is a convex linear combina-
tion of wi+1bi+1 andwivi. Hence,wibi ≥ wi+1bi+1.
This shows that the ranking induced by these bids is
the same as that induced by truth-telling, i.e., mer-
chant i is rankedi by the ranking function of the
next-price auction.

Next, we show that under the next-price auction,
no merchant can gain by changing her bid unilater-
ally. Consider the merchant ranked (and indexed)x.
With the above bids, she is making a profit of:

U(x) = µxθx(vx − bx+1)

= µx

K∑
j=x

(θj − θj+1)
(

vx −
wj+1vj+1

wx

)
If the merchant changes her bid in order to be

rankedy, her profit becomes

U(x) = µxθy(vx − by+1)

= µx

K∑
j=y

(θj − θj+1)
(

vx −
wj+1vj+1

wx

)
If the merchant decreases her bid in order to be

rankedy, i.e. y > x, then the net change in profit is:

−µx

y+1∑
j=x

(θj − θj+1)
(

vx −
wj+1vj+1

wx

)
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By equation 9,wxvx ≥ wj+1vj+1 for j =
x, . . . , y + 1, which in turn implies that the above
change is non-positive. Similarly, if the merchant in-
creases his bid in order to be rankedy, i.e. y < x,
the net change in profit is:

µx

x+1∑
j=y

(θj − θj+1)
(

vx −
wj+1vj+1

wx

)
Again, equation 9 implies that this change is non-

positive. Thus, none of the merchants has any incen-
tive to change her bid unilaterally and the bids are in
equilibrium.

Note that the merchants can achieve this equilib-
rium by solely using the knowledge of their true valu-
ation and the current price being charged to them. To
do this, the merchants start by bidding their true valu-
ations, after which thekth-ranked merchant changes
her bid to the one indicated in the formula above in
order to prevent anybody from under-cutting her, fol-
lowed by merchantk − 1 changing her bid to the
bk−1 value defined above and so on. For example,
consider four merchantsA, B, C andD bidding for
three slots. Let all four of them have a click-through
rate of0.5 at the top slot,0.4 at the middle slot and
0.2 at the bottom slot. Let the true valuations per
click of the three merchants be 200, 150, 100 and 40
respectively. Let the ranking function be Google’s
revenue-ranking function. The merchants start off by
bidding their true valuations, andA, B andC get the
top, middle and bottom slot respectively, and make
a profit of25, 20 and12 respectively. At this point,
merchantB has an incentive to undercutC by bid-
ding 80, which will result in B making a profit of
22, while C makes a reduced profit of8. In order to
remove any incentive forB to undercut her,C can
change her bid to70 as prescribed by the above for-
mula. At this pointB is making a profit of32. Now,
B faces the problem ofA trying to undercut her by
bidding 100 (say) in order to make a profit of52,
reducingB’s profit to 25. To removeA’s incentive
to undercut her,B can change her bid to86 as pre-
scribed by the above formula.

With suitable assumptions, including separability
of click-through rates, one can also use standard

techniques such as the envelope theorem [SB94] to
prove revenue equivalence. We omit the details since
our first-principles analysis gives a stronger result in
the form of a pure strategy Nash equilibrium under
which the next-price auction is revenue-equivalent
to the laddered auction, while the envelope theorem
would only guarantee a mixed-strategy Nash equilib-
rium. Further, we obtain a simple and explicit char-
acterization of the revenue-equivalent Nash equilib-
rium. Admittedly, these results show revenue equiv-
alence to the next-price auction only. However, since
the next-price auction is the auction currently in de-
ployment, it is arguably the most interesting auction
to consider in terms of showing revenue-equivalence.

Existence of Multiple Nash Equilibria. The fore-
going discussion shows that there exists an equilib-
rium for the next-price auction which achieves the
same ranking and the same revenue as the laddered
auction. It should be pointed out that not all equi-
libria of the next-price auction have these proper-
ties. We next give an example that shows that there
may exist other pure-strategy Nash equilibria under
which the next-price auction achieves a smaller rev-
enue than the truthful auction, and yet others under
which the next-price auction achieves a higher rev-
enue. Consider three merchantsA,B andC having
valuation-per-click of500, 480 and100 respectively
bidding for two slots. Assume that the click-through
rates are separable, and that all the merchants have
the sameµi of 1, and that the position-specific fac-
tors are given byθ1 = 0.2 and θ2 = 0.15. Let
the ranking function be revenue-ranking. Assum-
ing that everyone follows the dominant strategy of
truth-telling, the laddered auction earns a revenue of
15 + (15 + 24) = 54. Moreover, if everyone bids
truthfully, then the next-price auction would earn a
revenue of15 + 96 = 111, more than twice the rev-
enue of the laddered auction. However, truthful bid-
ding is not an equilibrium for the next-price auction.
One way to achieve equilibrium is for merchant A
to change his bid to110 in which case the revenue
earned is15 + 22 = 37. On the other hand, if equi-
librium is achieved by merchantB changing her bid
from 480 to 200 before merchantA changes his bid,
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a different equilibrium is reached. In this case, the
revenue earned is15 + 40 = 55. In this particu-
lar example, unless merchantB bids 200 or lower,
merchantA will have an incentive to undercut her.
This indicates that among all possible equilibria for
this instance (excluding the ones where merchantC

bids more than her true valuation, as there is no in-
centive for merchantC to do so), the highest revenue
earned is55. In order to achieve an equilibrium that
achieves the same revenue as the laddered auction,
merchantB could change her bid to195, again pre-
venting under-cutting by merchantA.
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