Truthful Auctions for Pricing Search Keywords

Gagan Aggarwal Ashish Goel Rajeev Motwani

Abstract only when a user actually clicks on the advertise-

ment. The price charged depends on the bids sub-
We present a truthful auction for pricing advertisingnitted. It is clear that merchants will have a prefer-
slots on a web-page assuming that advertisementsgnce for paying a smaller price and for obtaining a
different merchants must be ranked in decreasing higher rank in the ordering of advertisements. These
der of their (weighted) bids. This captures both thmnflicting objectives, along with the fact that click-
“Overture model” where bidders are ranked in othrough rates vary depending on position and that the
der of the submitted bids, and the “Google modefiierchants are selfish agents trying to maximize their
where bidders are ranked in order of the expected@n utility, makes this an interesting and involved
revenue (or utility) that their advertisement genesuction. The same framework applies for the pricing
ates. Assuming separable click-through rates, weadvertising slots on static web content as opposed
prove revenue-equivalence between our auction anddynamically generated web-pages such as search
the non-truthful next-price auctions currently in useengine results.

In the auctions currently being used, the search en-

gine first picks the subset of advertisements to be dis-
1 Introduction played and matches them to slots based on the sub-

mitted bids; the matching criteria is referred to as the
Keyword auctions are an indispensable part of thgnking functionand is an integral component of the
business model of modern web search engines anghisting keyword auctions. Then, the auctioneer de-
responsible for a significant share of their revenue. ditles on a price for each merchant based on the bids

a keyword auction, a set of merchants submit bids gAd the allocation. There are two popular ranking
specific keywords. If a user searches for a keywolglethods:

advertisements from the merchants for that keyword

are shown to the user along with results that matct- 1ne “Overture” method: Merchants are ranked
the keyword. The set of advertisements as well as " the decreasing order of the submitted bids.
their order is determined by the bids submitted for Ve Will call thisdirect ranking

that keyword. The search engines (which we willy The “Google” method: Merchants are ranked
refer to as auctioneers) typically charge a merchant i, the decreasing order of thranking scores

" , N . where the ranking score of a merchant is de-
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design. Hence the only degree of freedom in tlttentivﬂ Finally, in the case of revenue ranking and
auction is the price charged per click-through favith an additional separability assumption (defined
each merchant. Both Overture and Google currenifysectior] 2), a truthful mechanism is efficient in the
charge a merchant the minimum amount it woukknse that it maximizes the total utility obtained by
need to bid to retain its current position in the authe auctioneer and the merchants together.

tiorE|. This price can never be larger than the submit-One might be tempted to suggest that the fa-
ted bid, since clearly, the submitted bid was enougious VCG mechanisn [Vic61, Cla71, Gro73] or a
to guarantee the merchant its current position. Tixeighted and biased variant of it would yield a so-
utility of a merchant is the expected gain per imprektion to this problem. However, we show an ex-
sion (i.e. the expected gain each time their advertisgnple (Sectiofi 3]2) where there does not exist any
ment appears) and is defined in secfipn 2. We wgkt of weights and biases for which the VCG mech-
refer to this auction as theext-priceauction. De- anism always outputs the same merchant ordering as
spite superficial similarity to the second-price authe given ranking function. Hence, the VCG mecha-
tion [Vic61], the next-price auction is not truthful -nism is not generally applicable to our problem. We
in Section[3.]l, we present examples where a mfurther discuss the applicability of VCG in Sectign 3.
chant has an incentive to bid less than its true value

unde'r the gbove auctidhs . _ Our results:  We design a simple truthful auction
This motivates the following natural question: Cafy 4 general class of ranking functions that includes
we design truthful keyword auctions? In a truthfy; e ct ranking and revenue ranking. More specif-
auction, bidding their true valuations for a keyworga”y’ we study the case where the merchants are
is a dominant strategy equilibrium for the merChaméssigned arbitrary weights which do not depend on
While interesting in its own right, the problem ofq pigs, and then ranked in decreasing order of their
designing truthful keyword auctions is not merelyeignted bids — we define this formally in sectjdn 2.
academic. First, since truth-telling is not a domjptormally, setting all the weights to 1 results in
hant strategy in the current auction, there is no clg gjrect ranking used by Overture, and setting the
prescription for merchants to determine their op{feights equal to the estimated click-through rates re-
mum bid. This optimum bid depends in a compligyis jn the revenue ranking scheme used by Google.
cated dynamic fashion on externalities such as th&ua call our auction the “laddered auction”. since
bids of the other merchants, and it is often necefy price for a merchant builds on the price of each
sary for merchants to hire expensive consultants QL hant ranked below it. We show that this auc-
intermediaries to determine these bids. A truthfyl - i< truthful. Eurther. we show that the laddered
rr.le.:chanlsm. quld simplify thg bidding process sigyction is the unique truthful auction, and hence is
nificantly, since it would require a merchant to Onl}f’ivially revenue-maximal for the auctioneer among

determine its valuation for the keyword, a quantity;; ¢ ,thfy| auctions. The auction is presented in sec-
that is intrinsic to the merchant. Secondly, obserylgn@] and the analysis is i} 5.

that in the current auctions run by Google and Over-

ture, there is an asymmetric incentive for merchantsWe then ask the next natural question: how will
I_ theLe may be an Ilnc?ntlve fﬁr ? Terchang.(tjo t?fﬁe auctioneer’s revenue change as a result of im-
ess than Its true value for each click on its bid, Bﬁementing our truthful auction rather than the next-

there is never an incentive for over-bidding. Atrutrb—rice auction currently in use? Since the next-price
ful mechanism would remove this under-bidding in-

3admittedly, this is at the expense of decreased prices since
Plus a fixed small increment, but we will ignore this minoour truthful mechanisms require charging the merchant less than

technical detail. the next-price auction given the same bids. However, the rev-
2These examples, as well as all others we show later, wsmie equivalence theorem that we prove later under restricted
notation from sectioE]Z. scenarios should alleviate this concern.



auction is not truthful, its revenue should be conour auctions to this case appears to be a non-trivial
puted assuming that the bids of the merchants ared interesting research direction.

in a Nash equilibrium. For general weights and Since the submitted bids are typically used for
click-through rates, we have not been able to answeore than one impression, in addition to a mer-
this question, primarily because we can not obtathant’s valuation, her budget may also be a param-
a simple characterization of the Nash equilibria ineter of relevance [MSVV05, BCI05]. However, be-
posed by the next-price auction in the general casare undertaking a combined study of budgets and
However, when the click-through rates are separaliethfulness, we need a better understanding and
(i.e. the click-through rates can be separated intaredeling of the role of budgets. For example, one
merchant-specific factor and a position-specific fagtethod for a merchant to determine its true value
tor; see Sectiop]2 for a formal definition), we provier a keyword may be to just compute the expected

the following revenue equivalence theorem: immediate profit per click (presumably, merchants
want users to go to their web-sites to purchase mer-
There exists gpure-strategyNash equi- chandise which results in immediate profit). If the

librium for the next-price auction which  merchant bids in accordance with the truth-telling
yields exactly the same revenue for the strategy that is dominant for our laddered auction,
auctioneer as our laddered auction. it would bid an amount equal to its valuation of the
keyword. Since the price charged by the auctioneer
We give an explicit characterization of this Nasfy never larger than the bid, each click results in an
equilibrium. These results are presented in se¢fion@mediate net profit. Hence, ignoring budgets would
This is arguably the most interesting special case {g& the right thing to do under this scenario.
the purpose of proving revenue equivalence. Inter-some recent work [MSVV05, BCI05] has stud-
estingly, we show that there may exist other purgss the web advertisement problem with budget con-
strategy Nash equilibria under which the next-pricgraints. Mehta et all [MSVV05] ignore the game-
auction achieves a smaller revenue than the truthfgboretic issues and instead focus on the algorithmic
auction, and yet others under which the next-prig?omem of matching merchants to web pages when
auction achieves a higher revenue. These examgl&s valuations and budgets are known to the auc-
are presented at the end of Secfign 6. In fact, stafgneer. Borgs et al/ [BC105] study the problem
ing from the truthful bids, there may be sequencgs selling multiple identical units when the agents
of self-interested moves (i.e. bid changes) that cgfs interested in getting multiple units as long as
lead to a Nash equilibrium for the next-price auctiofejr payment does not exceed their budget. While
of higher or lower revenue than the truthful auction, jodel with multiple identical units might be appli-
This suggests that while the revenue of the curretyple to the case of web pages with a single adver-
auctions could be better or worse than the truthfidement slot, it is not suitable for web pages with
auction depending on which equilibrium the bids se{yItiple advertisement slots, as it does not take into
tle into, the revenue of our truthful auction is morgccount the inherent differences in visibility between
predictable. various positions (slots) on the same page.

Discussion and Related Work: We assume 2 Model and Notation

throughout that the number of slots, that the auc-

tioneer is selling for a given keyword does not dd-here areN merchants bidding foiX < N slots
pend on the submitted bids. Our auction is not trutbn a specific keyword. Let CT;R denote the click-
ful if the auctioneer computes the optimum numbérrough rate of thé-th merchant if placed at slgt<
of slots (in terms of the revenue generated by ofif. We assume that CT,R is arbitrary, but known to
laddered pricing scheme) to be displayed. Extenditige auctioneer. Also, we assume that GTk non-
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increasing inj. Set CTR; =0forj > K. Letv; 6; > 602 > ...0g > 0 such that the click-
denote the true value of a click-through to merchatfirough rate CTR; of the i** merchant at thej"
i. We assume that; is known to merchant, but not slot is given by;6;.

to the auctioneer. . . ) o
As outlined in the introduction, we will assume There is evidence to believe that this is a reason-

that the ranking function is externally specified. wable assumption that holds (approximately) in many

will consider the class of ranking functions wherkal-world cases.

merchant; is assigned an a priori weight; that is

independent of her bid. Léf; denote the bid of 3 Need for a New Auction

the i'" merchant for each click-through. The mer-

chants are ranked in the order of decreasing;. In this section, we begin by giving an example to
Settingw; = 1 for all 7 is equivalent to the directshow that the next-price auctions being currently
ranking function (the Overture model), while settingsed by Google and Overture are not truthful. In or-
w; = CTR;; reduces to the revenue-ranking funaer to construct a truthful auction, the first logical
tion (the Google model). Merchartis charged a step is to see whether the famous VCG mechanism
price-per-click,p; < b;, which is determined by theapplies to the problem. However, this is not the case,
auction. We assume the merchants to be risk-neuteaid we give instances of ranking functions for which
As such, if merchant is placed at position, it ob- there does not exist any set of weights and biases for
tains a utility of CTR ; - (v; — p;) per impression. which the ranking output by the VCG mechanism is
Recall that an auction is truthful if bidding her trualways the same as the one output by the given rank-
valuation (i.e. b; = v;) is a dominant strategy foring function.

every agent Now, we formally define the next-price

auctions currently being used. 3.1 Next-price Auction is not Truthful

Definition 2.1 (Next-price Auction) Given  the Consider three merchants, B and C' bidding for
ranking function,R = (wy,ws,...,w,) and the two slots. Let all three of them have a click-through
bid vectorb = (by,...,b,), the next-price auction rate of0.5 at the top slot and.4 at the bottom slot.
ranks the merchants in the decreasing ordergh; Let the true valuations per click of the three mer-
and charges the merchant rankéén amount-per- chants be 200, 180, and 100 respectively. Then, if
click equal to the minimum bid she needs to ha@¥ the merchants bid truthfully, merchadtends up
submitted in order to retain rank. Letw, and paying a price oft80 per click, making an expected
wy refer to the weights of the merchants rankedprofit of (200 — 180) x 0.5 = 10 per impression.
andi + 1 respectively. And leb, refer to the bid In this case, she has an incentive to underguy
submitted by the merchant rankeéd- 1. Then the lowering her bid to110, and make a net profit of
price charged to the merchant rankéeds wwbi,?' (200 — 100) x 0.4 = 40. We note that there is no in-
centive to bid higher than one’s true valuation under
We will now describe the separability assumptiofhe next-price auction. This is because the price-per-
which we will use (only) for our results on revenueclick charged is the minimum bid required to retain
equivalence. Informally, this assumption statesme’s rank; therefore, in cases where bidding higher

that the click-through rates can be separated int(mﬂ:proves one’s rank, the price-per-click charged is
merchant-specific factor and a position-specific fagigher than one’s true valuation.

tor.

Definition 2.2 (Separable Click-through Rates) 3.2 Weighted VCG may not Always Apply

The click-through rates are said to be sepdn this section, we show by means of a counter-
rable if there existuy,p2,...un, > 0 and example that even for the simple case of direct rank-
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ing, there does not exist any set of (bid-independem8lues ofi,i’ < n and; < K — 1. We will prove
weights and biases for which the VCG solutiothis by downward induction op.
achieves the same allocation as direct ranking. ThisFirst consider the base casejo= K — 1. Con-
will show that, in general, VCG does not apply teider any pair of merchants. Re-index the mer-
our problem. Consider two merchamsand B bid- chants such that the two merchants are indexed
ding for two slots on a web page. Let both the mesind j + 1. Let @ = CTR;1,,41/CTR; ;41 and
chants have a click-through rate (CTR)(b# at the let ¢ = CTR;;/CTR; ;1. Now, consider the
first slot. For the second slot, merchahhas a CTR ranking functionR with w; = 1, w;y1 = o
of 0.4 while merchantB has a CTR 0f).2. Since All the other merchants are assigned a weight of
any of the merchants can bid the highest and get the Suppose there exists a weighted VCG mech-
top slot in direct ranking, both the merchants muahism that always results in the same ranking as
have non-zero weight in order for weighted VCG tthis ranking function. Letw; be the weight as-
achieve the same allocation as direct ranking. Lsiyned by the VCG mechanism to merchannor-
wa > 0 andwp > 0 be the weights assigned bynalized such thab; = 1. Then, the VCG mech-
the VCG mechanism to merchamsand B respec- anism chooses that ranking scheme that maximizes
tively. Denote the bias assigned to ranking merchant® | Wi (i) CTR(M(4), 9) by 3y, Wherem (i) is the in-
x followed by y by H(x,y) for z,y € {A, B}, dex ofthe merchant placedn the ranking scheme.
x # y. Then, the VCG mechanism will ranB Let p be the ratio of the maximum click-through rate
before A if wa(0.4b4) + wp(0.4bp) + H(B, A) > tothe minimum click-through rate over all merchants
wa(0.4ba) + wp(0.2bp) + H(A, B), which is true and positions, and let be the ratio of the max-
whenevebp > (H(A,B)—H(B,A))/(0.2wpg), ir- imum VCG weight to the minimum VCG weight.
respective of merchamt’s bid. On the other hand,Also, let .., = max{1,1/«) and letB,,, =
the direct ranking scheme will rank before B min{1,1/a). Consider the following set of bids:
wheneverA’s bid is higher thanB’s bid. Thus, the b, = (2n)/"pvfBpe, fori =1,...,5 — 1, b; = 1,
VCG mechanism does not apply to this instance. 3, ; = 1/a, andb; = Bpin/((2n)~U+D pv) for
fact, we show the following general theorem. the rest. Then, it is easy to verify that merchant
is placed at positiori for i = 1,2,...,5 — 1 and
Theorem 3.1 Let the number of merchants withnerchantsi andj + 1 share the remaining two po-
non-zero click-through rates be > K. If the click- sitions (i.e., positiong andj + 1) under both the
through rates are not separable, then there existg@nking functionR as well as the VCG mechanism.
ranking functionR = (wi,ws,...,w,) for which The ranking score undét of merchang and;j +1is
there does not exist any set of weights for which unexactly the same, namely Therefore, the ranking
ased, weighted VCG always yields the same rankiitgiction R can be forced to place them in any cho-
as the ranking functiorR. sen order by an infinitesimal change in the bids. In
order for the VCG mechanism to produce the same
Proof: Let CTR,; be the click-through rate offanking ask after the change, VCG must rate both
merchant with index at the j* position. First note Possible orderings ofand; + 1 equally as well, i.e.
that if CTR ;/CTR; j+1 = CTRy ;j/CTRy 1, for the weighted sum of utilities (with the above bids)
all values ofi, i < nandj < K — 1, then the click- must be the same for both possible orderings.
through rates are separable: just get= CTR; i

CTRj;1,
andf; = CTRy ;/CTR k. ¢Fwjp =1+ wj+1CTF\),7J+1,J (1)
We will show that if for every ranking function AREAR
R = (wy,we,...,w,), there exists a set of VCG We could also have set the bids of the other mer-

weights which always yield the same ranking/as chants such that they getranks. ., j, leaving mer-
then CTR;/CTR; j+1 = CTRy j/CTRy ;41 for all  chantsj andj + 1 to compete for rank + 1 = K.
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Then, a reasoning similar to above would show that Using the above two equations and some elemen-
tary algebra, we get,

1= Wi+1 (2) CTRj,j B CTRjJ_H
Putting equations|1 and 2 together, we get CTRj+1,;  CTRj+141
This completes the proof by induction. |
CTRj+1,5 — o Although we have presented the theorem above for
CTRj 41,541 unbiased VCG, a similar statement holds for biased,
This completes the proof of the base case. weighted VCG as well. We can see this as follows.

By the induction hypothesis, CTR/CTR,; j+1 = In each of the constrainig [ P} 3 4 above, the
CTRy ;/CTRy 1 forall values ofi,i' <n and; < two sides of the equation represent the rating given
j < K — 1. Next considerj = j. Consider the by the VCG mechanism to two different outcomes.
ranking functionR with w; = 1 for all merchantg. If the biased VCG mechanism adds an unequal bias
Let w; be the weight assigned by the corresponditg the two outcomes, it can be viewed as adding a
VCG mechanism to merchamt Again consider a non-zero bid-independent constant term to the right-
pair of merchants and re-index merchants such thand side. The key idea is that we can scale up the
the pair is indexed andj + 1. Letb; = b;; = 1. bids uniformly without changing the ordering output
As before, we can set the bids of other merchaditg the ranking functionR. Thus, the chosen VCG
such that merchanitis rankedi fori = 1,...,5 — weights need to satisfy the constraints both for the
1,7 +2,..., K, while j andj + 1 share rankg and scaled and the unscaled bid vector, which is impos-
j+1. Since the ranking score given is the same sible in the presence of a non-zero bid-independent
for bothj andj + 1, the VCG mechanism must als@onstant term. Thus, the VCG mechanism must have

be ambivalent towards their order, i.e. added the same bias to both sides of each of the con-
straints, thereby leaving the constraints unchanged.
wjCTR; ;b 4+ wjy1CTR 41 j11bj We state the following theorem without proof.

- c‘ijTRj’j“bjJr“)JAHC-I-RJ”FWbj“Theorem 3.2 Let the number of merchants with

non-zero click-through rates be > K. If the click-
through rates are not separable, then there exists a
wit1 _ CTR;j — CTRj ;41 3) ranking functionR = (wy,ws,...,w,) for which

Y CTRj;1,; — CTRj41,54+1 there does not exist any set of weights for which bi-

ased, weighted VCG always yields the same rankin
We can also set the bids of the other merchant g ysy g

o 38 theR.
such thatthey getrankds...,j,j+3,..., K, leav-
ing ranksj + 1 andj + 2 for merchantg andj + 1. Interestingly, VCG is applicable under the sep-

Then, a reasoning similar to above would show tharability assumption, with appropriately chosen
weights. It is easy to verify the following theorem.

which implies that

wi+1 _ _ CTRy 11 — CTRy it
] CTRj+1,5+1 — CTRjy1,j42

(4) Theorem 3.3 Let the click-through rates be separa-
_ ble. Then the VCG mechanism having merchant
From Equation§]3 ar{d 4, we get VCG weight set tav;/CTR; ; always produces the

CTR,; —CTR;j;1 _  CTR;;j11— CTR; 42 same ordering as the ranking functi¢a , . .. , wy,).

CTRj11,; — CTRj41+1  CTRjy1+1 — CTRj11,42 The above theorem implies that with the separa-
bility assumption, the ranking functions maximize
a certain global utility function. In particular, the
CTR;j+1  CTRj11 41 revenue-ranking scheme maximizes the total utility
CTR;ji2 CTRj11 42 obtained by the merchants and the auctioneer.

Also, by induction hypothesis, we have




4  The Truthful Auction we will show that merchant/ cannot benefit by ly-

ing about her valuation. Among all ranks that give
In this section, we will assume without loss of geRhe merchant the highest profit (i.etility — price),
erality that thei" merchant also has th&" rank in |et - be the rank closest to, i.e. the one with the
the auction. The truthful auction is quite simple: FQgast | — 2|. Now suppose that the merchant can
1 <4 < K, set the price-per-clicl; charged to penefit by lying, i.e.; # 2. For a contradiction,

merchant as: we will show that there is a rank closer towhich
K Wit gives at least the same profit. For this, observe that
CTRiipi = Y _(CTR;; — CTR; j11) ZUJF bj+1-  if » > z, then the change in profit by moving to

j=i rank 7 — 1is (CTR; ;-1 — CTRy ;) (vz — =b),
which is non-negative. On the other handy ik =z,
the change in profit in moving to rank + 1 is
1. For those clicks which merchantwould have (CTR; 41 — CTR;;)(v; — $=br), Which is again
received at positiori + 1, she pays the sameion-negative.
price as she would have paid at position 1. To show uniqueness, consider any truthful auction
A that ranks the merchants in the decreasing order of
= _ _ w;b;. Consider any merchadt/ and fix the bids of
amount equal to the minimum bid required tgy| y¢ gther merchants arbitrarily. With these bids,
retain positiory. let p.4(j) be the price charged by auctiohto mer-
Sincew;b; > w;b, for j > i, it follows thatp; < chant)M if she is ranked;, with p4(K + 1) = 0.
b;. Hence the price charged per click-through can b@te that in a truthful auctiom(j) can depend on
no larger than the submitted bid. We will refer to thi§1€ bids of other merchants, but is independent of

(5)

In other words,

2. For the additional clicks, merchantpays an

auction ad.adderedAuction(w, . .., w,) or simply M'’s bid. Assume, without loss of generality, that
as theladdered auctiorwhen thew;s are clear from the other merchants are indexed such that merchant
the context. would be ranked if merchant) bidsocc. To prove
uniqueness, it suffices to show that for any truthful
. auction,
5 Analysis

. . Wj41
pA(J)—pa(i+1) = (CTR, ;—CTR, ; I,
Theorem 5.1 Given fixedwn, . .., w,, the laddered U) ) = ( ! i+1) Wy ](21)

auction is truthful. Further, it is the unique truthful First that hart h luati
auction that ranks according to decreasingp;. Irs ws_ulppose a merc-a gs vaiuation
vy = —25bj41 + €. Then, if she bids truthfully,

Wg

Proof: Consider a merchant/. Fix the bids of all for sufficiently smalle > 0, she is ranked. The ad-
the other merchants arbitrarily. With these bids, Igftional valuation per impression of being rankgd
p(j) be the price charged by the laddered auctionifistead ofj + 1 is given by(CTR, ; — CTR; j+1)va.
merchantM if her rank isj, with p(K + 1) = 0. Thus, this is the maximum amount that can be
Note that the price charged depends only on m@harged by a truthful auction for this additional valu-
chantM’s rank and is independent of her exact bi@tion (otherwise, the merchant can benefit by bidding
value. Letvy, be the true valuation of a single clickower to get rankj + 1). Sincee can be made arbi-
for merchantM. If merchant) bidsv,,, let her be trarily small, this proves that

rankedz. Also, without loss of generality, assume . . w1
that all the merchants are indexed such that merchBat/) —PA(j+1) < (CTR;;—CTR; ;1) ,5)

j would be ranked if merchantM bidswy,. Then, ) )
w;b; > wev, forall j < z andwzv, > w;b; Next, suppose that merchadt/ has valuation
for all > z. To show that the auction is truthfuly,, = “’f“ij — €. Then, if she bids truthfully,

Wg

bj+1
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for sufficiently smalle > 0, she is ranked + 1.
The additional valuation per impression of being 0; 0;
ranked; instead ofj + 1 is given by (CTR,; — "'~ (9@1> w"+1bi+1+<1 B 911) wiv; (10)
CTR; j+1)vz. Thus, this is the min!mum amoun(mth the initializationbs .
that can be charged by a truthful auction for this addi-
tional valuation (otherwise, the merchant can benefiheorem 6.1 (Revenue-Equivalence Theorem)
by bidding higher to get th¢#” rank). Since: can be The bids defined by the recursive formula given
made arbitrarily small, this proves that in Equation[1 are in equilibrium. Moreover, the

‘ ranking induced by these bids is the same as the
pa(d)—pa(j+1) > (CTRI,]-—CTRW-H)wJHij. ranking induced by truthful bidding.

Wy

= VK+1-

(8) Proof: To prove this, we unroll the recursion to
Putting togethefr|7 ar{d 8, we dé€t 6, thereby COYet:

pleting the proof. [ |
| K
Corollary 5.2 For any fixedws,...,w,, the lad- wib; = Z (0; — 0j41)wj11v541
dered auction is the profit-maximizing truthful auc- Oi-1 ;52
tion that ranks merchants by decreasimg;. Thus,w;11b;4+1 is a convex linear combination of
W;v;j fOFj =i+1,...,K + 1. Sincew;v; > W;V;
forj=i+4+1,..., K +1, we getw;v; > w;1+1b;+1.

6 Revenue Equivalence with S'epa‘_We also know thatv;b; is a convex linear combina-

rable Click-Through Rates tion of w; 1011 andw;v;. Hencew;b; > w;y 1bi4 1.

This shows that the ranking induced by these bids is

In this section, we compare the revenue of the lagre same as that induced by truth-telling, i.e., mer-

dered auction to the revenue achieved by the negfrant; is ranked: by the ranking function of the

price auctions currently being used. As mentiong@xt-price auction.

earlier, truth-telling is not a dominant strategy for the Next, we show that under the next-price auction,

existing auctions. Thus, we consider the revenuef merchant can gain by changing her bid unilater-

the existing auctions under equilibrium conditiongjly. Consider the merchant ranked (and indexed)

i.e. a setting of bids for which no merchant can iwjith the above bids, she is making a profit of:
crease her profit by a unilateral change in his bid.

For separable click-through rates (see Definit/ (1) = 11a02(vz = bzs1)
tion[2.2), we show that there existspare-strategy _ i(e‘ —0;4) (U _ wj+1Uj+1)
Nash equilibrium under the next-price auction that * R * Wy

j=z
yields the same revenue as the laddered auction,

Let the weights used by the next-price auction beIf b merchar.lt changes her bid in order to be
rankedy, her profit becomes

(w1, we,...,w,). Re-index the merchants in the de-
creasing order ofv;v; so that Ux) = paby(ve —bys1)
K
. wj Uj;
wiv; > wip1vip1 fori=1,...n—1 (9) = |l Z(Qj —041) (vx — T)
=y r

Let the click-through rates be separable with thef the merchant decreases her bid in order to be

click-through rate of mercharitat position; given rankedy, i.e.y > =, then the net change in profit is:
by pif;. Also letfx; = 0. Then, the bids; il

for this Nash equilibrium are recursively defined for _ 0: — 0. (v _ wj+1vj+1)
i=K,...,1as follows: sz( i = 51) e W,

j=z



By equation[ P, w,v, > wjr1v;41 for j = techniques such as the envelope theorem [SB94] to
x,...,y + 1, which in turn implies that the aboveprove revenue equivalence. We omit the details since
change is non-positive. Similarly, if the merchant ireur first-principles analysis gives a stronger result in
creases his bid in order to be rankedi.e. y < z, the form of a pure strategy Nash equilibrium under

the net change in profit is: which the next-price auction is revenue-equivalent
to the laddered auction, while the envelope theorem
41 . vyould only guarantee g mixe'd-strategy Nas.h 'equilib-
fiz > (0; — 011) <vx - M) rium. Further, we obtain a simple and explicit char-
j=y W acterization of the revenue-equivalent Nash equilib-

Again, equatiofi}o implies that this change is nofium. Admittedly, these results show revenue equiv-
positive. Thus, none of the merchants has any inc&gnce to the next-price auction only. However, since
tive to change her bid unilaterally and the bids are {i€ next-price auction is the auction currently in de-
equilibrium. m Ployment, it is arguably the most interesting auction

Note that the merchants can achieve this equi“@_consider in terms of showing revenue-equivalence.
rium by solely using the knowledge of their true valu-
ation and the current price being charged to them. Eaistence of Multiple Nash Equilibria. The fore-
do this, the merchants start by bidding their true valgeing discussion shows that there exists an equilib-
ations, after which thé*"-ranked merchant changesium for the next-price auction which achieves the
her bid to the one indicated in the formula above Bame ranking and the same revenue as the laddered
order to prevent anybody from under-cutting her, fokuction. It should be pointed out that not all equi-
lowed by merchant — 1 changing her bid to thelibria of the next-price auction have these proper-
br_1 value defined above and so on. For examptees. We next give an example that shows that there
consider four merchants, B, C' and D bidding for may exist other pure-strategy Nash equilibria under
three slots. Let all four of them have a click-througWhich the next-price auction achieves a smaller rev-
rate of(0.5 at the top slot).4 at the middle slot and enue than the truthful auction, and yet others under
0.2 at the bottom slot. Let the true valuations pevhich the next-price auction achieves a higher rev-
click of the three merchants be 200, 150, 100 and dBue. Consider three merchantsB andC' having
respectively. Let the ranking function be Googleigluation-per-click 0600, 480 and100 respectively
revenue-ranking function. The merchants start off lydding for two slots. Assume that the click-through
bidding their true valuations, ardl, B andC' get the rates are separable, and that all the merchants have
top, middle and bottom slot respectively, and maltee sameu; of 1, and that the position-specific fac-
a profit of25, 20 and12 respectively. At this point, tors are given byy; = 0.2 andf, = 0.15. Let
merchantB has an incentive to undercat by bid- the ranking function be revenue-ranking. Assum-
ding 80, which will result in B making a profit of ing that everyone follows the dominant strategy of
22, while C' makes a reduced profit 8f In order to truth-telling, the laddered auction earns a revenue of
remove any incentive foB to undercut herC' can 15 + (15 + 24) = 54. Moreover, if everyone bids
change her bid t@0 as prescribed by the above fortruthfully, then the next-price auction would earn a
mula. At this pointB is making a profit of32. Now, revenue ofl5 + 96 = 111, more than twice the rev-
B faces the problem ofl trying to undercut her by enue of the laddered auction. However, truthful bid-
bidding 100 (say) in order to make a profit df2, ding is not an equilibrium for the next-price auction.
reducingB’s profit to 25. To removeA’s incentive One way to achieve equilibrium is for merchant A
to undercut herp can change her bid t8 as pre- to change his bid td10 in which case the revenue
scribed by the above formula. earned isl5 + 22 = 37. On the other hand, if equi-

With suitable assumptions, including separabilitibrium is achieved by mercham changing her bid
of click-through rates, one can also use standdrdm 480 to 200 before merchantl changes his bid,
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a different equilibrium is reached. In this case, the
revenue earned i85 + 40 = 55. In this particu-

lar example, unless merchaft bids 200 or lower,
merchantA will have an incentive to undercut her.
This indicates that among all possible equilibria for
this instance (excluding the ones where merchiant
bids more than her true valuation, as there is no in-
centive for merchant’ to do so), the highest revenue
earned i$H5. In order to achieve an equilibrium that
achieves the same revenue as the laddered auction,
merchantB could change her bid t695, again pre-
venting under-cutting by merchandt

References

[BCIT05] C. Borgs, J. Chayes, N. Immorlica,
M. Mahdian, and A. Saberi. Multi-unit
auctions with budget-constrained bid-
ders. InProceedings of the 7th ACM
Conference on Electronic Commefce
pages 44-51, 2005.

[Cla71] E. Clarke. Multipart pricing of public
goods.Public Choice 11:17-33, 1971.

[Gro73]  T. Groves. Incentives in team&cono-
metrica 41:617-631, 1973.

[MSVV05] A. Mehta, A. Saberi, U. Vazirani, and
V. Vazirani. Adwords and generalized
online matching. IrProceedings of the
46th IEEE Symposium on Foundations
of Computer Scien¢@005.

[SB94] C.P. Simon and L. BlumeMathematics
for Economics W.W. Norton & Com-
pany, Inc., New York, 1994.

[Vic61] W. Vickrey. Counterspeculation, auc-
tions and competitive sealed tenders.
Journal of Finance16:8-37, 1961.

10



	Introduction
	Model and Notation
	Need for a New Auction
	Next-price Auction is not Truthful
	Weighted VCG may not Always Apply

	The Truthful Auction
	Analysis
	Revenue Equivalence with Separable Click-Through Rates

